Control function: time-controlled pulse

ontrol function: time-controlled pulse	1
Description	
1.1 Pins	
1.2 Parameters	1
1.3 Input	2
1.5 Representation	2

1 Description

This device produces a pulse of amplitude 1, with starting and stopping determined dynamically by the value of the inputs.

1.1 Pins

This device has four pins:

pin	type	description
t_trig	input	pulse triggering time
Ton_delay	input	delay before starting
Toff_delay	input	delay before stopping
out	output	generated pulses

1.2 Parameters

The following parameters must be defined:

parameter	description	units
stepped	=1 to indicate stepped transitions	
	=0 to indicate ramped transitions	

The value of the parameter *stepped* determines whether the device operates with *stepped* or *ramped* transitions. In *stepped* mode (the default for ideal logical signals), the output is represented as a stepped signal, where changes in value are observed as vertical steps at the time they occur. In *ramped* mode, the value transitions of the output are seen as ramps between t- Δt and t.

1.3 Input

The input pins may be connected to any control signal.

1.4 Output

The output is a series of pulses generated dynamically according to the variable values of triggering instant and Ton,Toff delays provided as inputs.

The representation of the output as having *stepped* or *ramped* transitions is determined by the value given to the parameter *stepped*.

1.5 Representation

The implementation of the model can be inspected by opening the device's subcircuit.

The value of the output is 0 or 1 as determined by the following rules:

where

$$\begin{split} T_{on} &= t_{trig} + T_{on} delay \\ T_{off} &= t_{trig} + T_{off} delay \end{split} \tag{2}$$