Control device: integral with limits | 1 Description | 1 | |---|---| | 1.1 Pins | 1 | | 1.2 Limits | 1 | | 1.3 History 1.4 Scopes 1.5 Output signal interpolation 2 Time-domain representation 3 Steady-state representation | 2 | | 1.4 Scopes | 2 | | 1.5 Output signal interpolation | 2 | | 2 Time-domain representation | 2 | | 3 Steady-state representation | 3 | | 4 Netlist | 3 | | 4.1 Format | | # 1 Description This device calculates the time integral of the input signal, and applies low and high limits to the resulting output signal. The limits are user-defined and can have constant or variable values. The limits are dynamic. #### **1.1 Pins** This device has four signal pins: | pin | description | value when unconnected | |-----|---------------|------------------------| | in | input | 0 | | rc | reset control | 0 | | rv | reset value | 0 | | out | output | as calculated | #### 1.2 Limits The low and high limits are user-defined constant or variable values. The selection options for the low limit values are: | option | value | |----------------|-----------------------------------| | no limit | low limit = -infinity | | constant value | low limit = user-defined value | | function value | low limit = user-defined function | The selection options for the high limit values are: | option | value | |----------------|-----------------------------------| | | low limit = +infinity | | constant value | low limit = user-defined value | | function value | low limit = user-defined function | ### 1.3 History Selection options for the history value of the output signal: | option | value | rules | |----------------|------------------------------------|------------------| | | history(t) = zero | | | | | any value | | function value | history(t) = user-defined function | constant or f(t) | ## 1.4 Scopes Setting the scope flag enables monitoring of the output signal during the simulation. ## 1.5 Output signal interpolation During the simulation, the output value of this device is calculated at successive instants t at intervals Δt . Between these simulation instants, the output value can be set to vary in one of two modes, ramped or stepped: | mode | output value between t - ∆t and t ⁻ | value at t | value at t | |---------|---|-------------------------------|-----------------| | ramped | interpolated linearly | calculated at t | calculated at t | | | between values out(t - Δt) and out(t^-) | | | | stepped | remains at out(t- Δt) | remains at out(t- Δ t) | calculated at t | # 2 Time-domain representation In the time-domain calculation at t>0, the output value is calculated as follows: > when rc(t) >0 $$out(t) = rv(t) \tag{1}$$ - else the output value is calculated as a sequence of three operations: - the device approximates the incremental value of the time integral of the input over the interval Δt by linearizing and averaging the value of the input over the interval (applying the trapezoidal rule of integration); it responds correctly to discontinuities encountered in the value of the input between t^- and t out1(t) = out(t - $$\Delta$$ t) + $\frac{in(t^-) + in(t - \Delta t)}{2} \cdot \Delta t$ (2) then, the calculated value is checked against the value of the low limit $$out2(t) = max(low(t), out1(t))$$ (3) then, the calculated value is checked against the value of the high limit $$out(t) = min(high(t), out2(t))$$ (4) note: when the value of the low limit exceeds the value of the high limit, the output is given the value of the high limit without warning # 3 Steady-state representation In the steady-state calculation at t=0, the output value is calculated as follows: if history is defined, $$out(0) = history(0)$$ else if $rc(0) > 0$, $out(0) = rv(0)$ else $out(0) = 0$ (5) #### 4 Netlist #### 4.1 Format Netlist format: _c_ilim;name;4;4;out,in,rc,rv,history,high,low,step/ramp,scope, history function expression ; high limit function expression ; low limit function expression | field | description | value | |--------------------------------|--|---------------------| | c_ilim | part name | | | name | instance name | | | 4 | pin count | | | 4 | pin count | | | out | signal name of the output | | | in | signal name of the input | | | rc | signal name of the reset control | | | rv | signal name of the reset value | | | history | history | constant value | | | | or "H" for function | | | | or "U" for | | | | undefined | | high | high limit | constant value | | | | or "H" for function | | low | low limit | constant value | | | | or "L" for function | | step/ramp | output interpolation | "S1" for stepped | | | | "S0" for ramped | | scope | monitoring, optional | "?s" for enabled | | history function expression | optional, required when history field of Line 1 is "H" | | | • | optional, required when the above line is present | | | high limit function expression | optional, required when high limit field is "H" | | | ·, | optional, required when the above line is present | | | low limit function expression | optional, required when low limit field is "L" | |