Exciters and Governors: Exciter AC3 | Exc | iters and | Governors: Exciter AC3 | 1 | |----------------------|-----------|------------------------|---| | | | tion | | | | | S | | | | | ameters | | | | | Data tab | | | | 1.2.2 | Exciter tab | 2 | | 2 Initial conditions | | 2 | | | 3 | Reference | ces | 2 | Hossein Ashourian, Jean Mahseredjian, 5/20/2021 11:01 PM #### 1 **Description** This device is an implementation of the IEEE type AC3 excitation system model. This device is implemented as described in [1]. Implementation details can be viewed by inspecting the subcircuit of this device. # **1.1 Pins** This device has 8 pins: | Pin name | Type | Description | Units | |----------|--------|---|-------| | VREF | Input | Reference voltage of the stator terminal voltage | pu | | Efss | Input | Steady-state field voltage at t = 0, for initialization | pu | | VC | Input | Terminal voltage of synchronous machine, | pu | | | | transducer output | | | VS | Input | Power system stabilizer signal | pu | | IFD | Input | Field current | pu | | EFD | Output | The field voltage signal | pu | | VF | Output | The excitation system stabilizer signal | pu | | VFE | Output | Signal proportional to exciter field current | pu | # 1.2 Parameters The default set of parameters can be found in [1]. #### 1.2.1 Data tab The parameters on the Data tab are: - 1. Gain K_A: voltage regulator gain - Time constant T_A: voltage regulator time constant Maximum regulator output V_{Amax}: maximum regulator voltage output - 4. **Minimum regulator output V**_{Amin}: minimum regulator voltage output - 5. Time constant T_B: time constant of the lead-lag compensator - 6. Time constant Tc: time constant of the lead-lag compensator - 7. Constant K_R: constant associated with regulator and alternator field power supply - 8. Time constant T_F: excitation control system stabilizer time constant - 9. **Gain K**_F: excitation control system stabilizer gain - 10. Gain K_N: excitation control system stabilizer gain #### 1.2.2 Exciter tab The Exciter tab allows to input: - 1. Gain K_E: exciter gain - 2. Time constant T_E: exciter time constant - 3. Exciter voltage Efdn: value of Efd at which feedback gain changes - 4. Gain K_{LV} minimum field voltage limiter loop gain - 5. Voltage V_{LV}: minimum field voltage limiter loop reference - 6. Demagnetizing factor K_D: demagnetizing factor - 7. Rectifier loading factor Kc: rectifier loading factor - 8. Voltage V_{E1}: The exciter voltage point which is near the exciter ceiling voltage - 9. Voltage V_{E2}: The exciter voltage point which is near 75% of V_{E1} - 10. Saturation function output SE_V_{E1}: The exciter saturation function value at V_{E1} - 11. Saturation function output SE_V_{E2}: The exciter saturation function value at V_{E2} The exciter saturation function is defined as $$S_{E} = A_{EX} e^{B_{EX} E_{FD}}$$ (1) which gives the approximation saturation for any E_{FD} (exciter output voltage). According to [2] (see pages 562 and 563), the coefficients A_{EX} and B_{EX} can be found from: $$A_{EX} = \frac{S_{V_{E2}}^4}{S_{V_{E1}}^3}$$ (2) $$B_{EX} = \frac{4}{V_{E1}} \ln \left(\frac{S_{V_{E1}}}{S_{V_{E2}}} \right)$$ (3) In the literature [2] $V_{E1} = V_{E_{max}}$ and $V_{E2} = V_{E_{0.75max}}$. #### 2 Initial conditions The reference voltage VREF can be manually or automatically set by connecting or not connecting the input signal VREF, respectively. When VREF is not connected (the signal is zero), the reference voltage is internally found from the steady-state solution. When VREF is connected, its initial value must match the per unit steady-state voltage of the stator terminal voltage, since otherwise the generator voltage will not start at the actual steady-state. ### 3 References - [1] PSS®E MODEL LIBRARY PSS®E 32.0.5, Siemens Energy, Inc. - [2] P. M. Anderson and A. A. Fouad, "Power system control and stability", second edition, IEEE Press, Wiley Interscience, 2003.