
Exciters and Governors: Exciter AC8B

 Exciters and Governors: Exciter AC8B
 1

 1 Description
 1

 1.1 Pins
 1

 1.2 Parameters
 1

 1.2.1 Data tab
 1

 1.2.2 Exciter tab
 2

 2 Initial conditions
 2

 3 References
 2

Tshibain Tshibungu, Jean Mahseredjian, 6/7/2018 7:16 AM

1 Description

This device is an implementation of an IEEE type AC8B excitation system model. This device is implemented as described in [1]. Implementation details can be viewed by inspecting the subcircuit of this device.

1.1 Pins

This device has 7 pins:

Pin name	Туре	Description	Units
VREF	Input	Reference voltage of the stator terminal voltage	pu
Efss	Input	Steady-state field voltage at t = 0, for initialization	pu
VC	Input	Terminal voltage of synchronous machine,	pu
		transducer output	
VS	Input	Power System Stabilizer signal	pu
IFD	input	Field current	pu
EFD	Output	The field voltage signal	pu
VFE	Output	Signal proportional to exciter field current	pu

1.2 Parameters

The default set of parameters can be found in [1].

1.2.1 Data tab

The parameters on the Data tab are:

- 1. Gain K_A: voltage regulator gain
- 2. Time constant T_A: voltage regulator time constant
- 3. Maximum regulator output V_{RMAX} : maximum regulator internal voltage output
- 4. Minimum regulator output V_{RMIN}: minimum regulator internal voltage output
- 5. **Gain K**_{PR}: voltage regulator proportional gain
- 6. Gain K_{IR}: voltage regulator integral gain

- 7. Gain K_{DR}: voltage regulator derivative gain
- 8. Time constant T_{DR}: lag time constant for derivative channel of PID controller

1.2.2 Exciter tab

The exciter tab allows to input:

- 1. Gain K_E: exciter gain
- 2. Time constant T_E: exciter time constant
- 3. Field current limit V_{FEmax}: exciter field current limit
- 4. Voltage V_{Emin}: minimum of exciter voltage back of commutating reactance
- 5. Demagnetizing factor K_D: demagnetizing factor
- 6. Rectifier loading factor Kc: rectifier loading factor
- 7. Field voltage V_{E1}: The exciter voltage point which is near the exciter ceiling voltage
- 8. Field voltage V_{E2}: The exciter voltage point which is near 75% of V_{E1}
- 9. Saturation function output SE_V_{E1}: The exciter saturation function value at V_{E1}
- 10. Saturation function output SE_V_{E2}: The exciter saturation function value at V_{E2}

The exciter saturation function is defined as

$$S_E = A_{EX} e^{B_{EX} E_{FD}} \tag{1}$$

which gives the approximation saturation for any E_{FD} (exciter output voltage). According to [2] (see pages 562 and 563), the coefficients A_{EX} and B_{EX} can be found from:

$$A_{EX} = \frac{S_{V_{E2}}^4}{S_{V_{E1}}^3} \tag{2}$$

$$B_{EX} = \frac{4}{V_{E1}} \ln \left(\frac{S_{V_{E1}}}{S_{V_{E2}}} \right)$$
 (3)

In the literature [2] $V_{\text{E1}} = V_{\text{E}_{\text{max}}}$ and $V_{\text{E2}} = V_{\text{E}_{0.75\,\text{max}}}$.

2 Initial conditions

The reference voltage VREF can be manually or automatically set by connecting or not connecting the input signal VREF, respectively. When VREF is not connected (the signal is zero), the reference voltage is internally found from the steady-state solution. When VREF is connected, its initial value must match the per unit steady-state voltage of the stator terminal voltage, since otherwise the generator voltage will not start at the actual steady-state.

3 References

- [1] "IEEE Recommended Practice for Excitation System Models for Power System Models for Power System Stability Studies," IEEE Standard 421.5-2005.
- [2] P. M. Anderson and A. A. Fouad, "Power system control and stability", second edition, IEEE Press, Wiley Interscience, 2003.