
# Flip-flop: S-R nand-gated unclocked



| Flip-flop: S-R nand-gated unclocked | 1 |
|-------------------------------------|---|
| 1 Description                       |   |
| 1.1 Pins                            |   |
| 1.2 Parameters                      |   |
| 1.3 Input                           |   |
| 1.4 Output                          |   |
| 1.5 Representation                  | 2 |

# 1 Description

This device is an implementation of an unclocked nand-gated S-R flip-flop without override controls. For a version with the override controls, use the device "S-R nand-gated unclocked full".

#### **1.1 Pins**

This device has four pins:

| pin  | type   | description |  |
|------|--------|-------------|--|
| S    | input  | S input     |  |
| R    | input  | R input     |  |
| Q    | output | Q output    |  |
| notQ | output | notQ output |  |

#### 1.2 Parameters

The initial value of Q must be defined if the device is possibly toggling at t=0. When the device operates in clearing or setting mode at t=0, the initial value is ignored.

The value of the  $stepped\_mode$  flag determines whether the device operates in stepped or ramped mode. In stepped mode (the default for ideal logical signals), the outputs are represented as stepped signals, where changes in value are observed as vertical steps at the time they occur. In ramped mode, the value transitions of the outputs are seen as ramps between t- $\Delta t$  and t.

| parameter    | description                                      |  |
|--------------|--------------------------------------------------|--|
| Q_ini        | initial value of Q if holding or toggling at t=0 |  |
| stepped_mode | =1 to indicate stepped mode (default)            |  |
|              | =0 to indicate ramped mode                       |  |

## 1.3 Input

The input pins may be connected to any control signals.

Numerical input values are automatically interpreted as logical values by this device, as follows:

| input     | converted logical value | logical value representation |
|-----------|-------------------------|------------------------------|
| /alue > 0 | true                    | 1                            |

| value > 0 | true  | 1 |
|-----------|-------|---|
| value ≤ 0 | false | 0 |

### 1.4 Output

The outputs are Q and its logical inverse *notQ*. Their representation as *stepped* or *ramped* signals is determined by the value given to the parameter *stepped\_mode*.

The numerical representation of the output logical values is:

output logical value output numerical value

|       | - |
|-------|---|
| true  | 1 |
| false | 0 |

### 1.5 Representation

The implementation of the model can be inspected by opening the device's subcircuit.

The model applies the following logic for determining its state:

| rule sequence         | action    | output                 |
|-----------------------|-----------|------------------------|
| if S>0 and R>0        | setting   | Q(t) = 1               |
| else if S<=0 and R<=0 | holding   | $Q(t) = Q(t-\Delta t)$ |
| else if S>0           | setting   | Q(t) = 1               |
| else if S<=0          | clearing  | Q(t) = 0               |
| endif                 |           |                        |
| if holding at t=0     | use Q_ini | Q(0) = Q_ini           |