
# Table function current source device



| I po | int-by-point device  | . 1 |
|------|----------------------|-----|
|      | Available versions   |     |
|      | .1 Parameters        |     |
|      | 1.1.1 Netlist format |     |
|      | Steady-state model   |     |
| 3    | Frequency Scan model |     |
|      | Time-domain model    |     |

Jean Mahseredjian, 12/29/2013 12:44:00 AM

#### 1 Available versions

The "I point-by-point" device accepts only 1-phase signals.

#### 1.1 Parameters

The following parameters are required:

- $\Box$  t<sub>start</sub> start time, if t < t<sub>start</sub> the source is an open-circuit.

The "Source characteristic points" allow entering the piecewise-linear source current function of time. The data rules are:

- Only positive time-points are allowed.
- Time-points can be entered in any order.
- Two voltage-points for the same time-point are allowed.
- The (0,0) pair is implicit if no data is entered for t=0.
- The entered function will automatically repeat until t<sub>stop</sub>, with its period equal to the maximum time-point.

A change of segment occurs when the simulation time t is greater or equal to the segment time-point. The precision of the waveform is related to the simulation integration time-step  $\Delta t$ . An example of entered characteristic data is shown in Figure 1. The corresponding simulation for  $t_{start} = 2ms$  and  $t_{stop} = 100ms$  is shown in Figure 2.

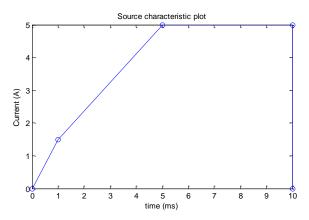



Figure 1 Sample source characteristic data

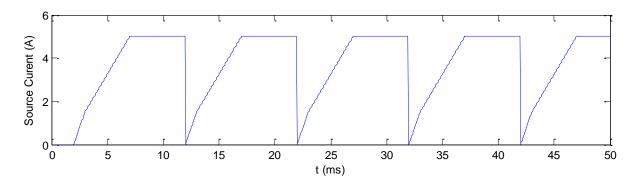



Figure 2 Simulated waveform for the source characteristic data of Figure 2

A file input method is also selectable as an option.

### 1.1.1 Netlist format

```
_lpoint;lpoint1;2;2;s1,s2,
2ms,100ms,4,1ms,1,?v,
1 1.5
5 5
10 5
10 0
```

| Field              | Description                                                                   |
|--------------------|-------------------------------------------------------------------------------|
| _lpoint            | Part name                                                                     |
| lpoint1            | Instance name, any name.                                                      |
| 2                  | Total number of pins                                                          |
| 2                  | Number of pins given in this data section                                     |
| s1                 | Signal name connected to k-pin (positive), any name                           |
| s2                 | Signal name connected to m-pin, any name                                      |
| t <sub>start</sub> | Start time                                                                    |
| t <sub>stop</sub>  | Stop time                                                                     |
| N                  | Number of data points                                                         |
| tunit              | Time units                                                                    |
| iunit              | Current units                                                                 |
| ?v                 | Request for voltage scope, sent to scope group vb (branch voltages), optional |
| ?i                 | Request for current scope, sent to scope group ib (branch currents), optional |

| ?p           | Request for power scope, sent to scope group p (branch power), optional                                                         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|
| t and i data | Time and Current data points are saved in the ModelData device attribute when N is greater than 0.                              |
| File name    | ModelData contains a file name when N=0.  The file must provide Time and Current data points (two columns of free format data). |

The comma separated parameters of this device are saved in the device attribute ParamsA. Time and voltage is saved in the ModelData attribute.

It is allowed to delete the m-pin to create an implicit ground.

## 2 Steady-state model

The steady-state model of this device is an open-circuit.

# 3 Frequency Scan model

The frequency scan model of this device is an open-circuit.

## 4 Time-domain model

The device is represented by the piecewise-linear function described in the source characteristic section. The source is active (not an open circuit) for  $t_{\text{start}} \leq t \leq t_{\text{stop}}$ .