# Ramp current source device



| Ramp current source device          | 1 |
|-------------------------------------|---|
| 1.1 When changing phases            |   |
| 1.2 The generic version of "I ramp" | 1 |
| 1.2.1 Parameters                    | 1 |
| 1.2.2 Netlist format                |   |
| 2 Steady-state model                |   |
| 3 Frequency Scan model              |   |
| 4 Time-domain model                 |   |

Jean Mahseredjian, 12/29/2013 12:45 AM

### 1 Available versions

The "I ramp" device accepts both 1-phase (general) and 3-phase signals. The 3-phase version is the equivalent of 3 decoupled sources (one for each phase).

### 1.1 When changing phases

- □ When the device is in its 1-phase state and its signal is changed to 3-phase, but the device is not double-clicked, balanced conditions are assumed and the 3 sources become identical to the 1-phase (phase-A) version. The Netlist is generated for the 3-phase version.
- □ When the device is in its 3-phase state and its signal is changed to 1-phase, but the device is not double-clicked, phase-A quantities are automatically retained for the 1-phase version. The Netlist is generated for the 1-phase version.

# 1.2 The generic version of "I ramp"

#### 1.2.1 Parameters

The generic version of "I ramp" has two pins.

The model parameters corresponding to the source function picture shown on the first data tab are:

- $\Box$  t<sub>start</sub> start time, if t < t<sub>start</sub> the source is an open-circuit.
- $\Box$   $t_0$  rise time to  $l_m$
- $\Box$   $I_m$  maximum voltage of the ramp
- $\Box$  t<sub>stop</sub> stop time, if t > t<sub>stop</sub> the source is an open-circuit. The stop time must be greater than the

start time.

#### 1.2.2 Netlist format

\_lramp;lramp1;2;2;s1,s2, 0,1ms,1kA,10ms,?v,?i,?p,

| Field              | Description                                                                   |
|--------------------|-------------------------------------------------------------------------------|
| _Iramp             | Part name                                                                     |
| Iramp1             | Instance name, any name.                                                      |
| 2                  | Total number of pins                                                          |
| 2                  | Number of pins given in this data section                                     |
| s1                 | Signal name connected to k-pin (positive), any name                           |
| s2                 | Signal name connected to m-pin, any name                                      |
| t <sub>start</sub> | Start time                                                                    |
| $t_0$              | Rise time t <sub>0</sub>                                                      |
| I <sub>m</sub>     | Maximum current of ramp                                                       |
| t <sub>stop</sub>  | Stop time                                                                     |
| ?v                 | Request for voltage scope, sent to scope group vb (branch voltages), optional |
| ?i                 | Request for current scope, sent to scope group ib (branch currents), optional |
| ?p                 | Request for power scope, sent to scope group p (branch power), optional       |

The m-pin of this device can be deleted to create an automatic ground connection.

An example of Netlist for the 3-phase version is given by:

\_lramp;lramp1a;2;2;s33a,s34a,

0,1ms,1kA,10ms,?v,?i,?p,

\_lramp;lramp1b;2;2;s33b,s34b,

0,1ms,1kA,10ms,?v,?i,?p,

\_lramp;lramp1c;2;2;s33c,s34c,

0,1ms,1kA,10ms,?v,?i,?p,

EMTPWorks automatically generates 3 separate (decoupled) sources, one per phase. The phase identification character (a, b or c) is automatically appended to the device instance name and signals.

## 2 Steady-state model

The steady-state model of this device is an open-circuit.

## 3 Frequency Scan model

The frequency scan model of this device is an open-circuit.

### 4 Time-domain model

The device is evaluated at each simulation time-point according to its function.

The source is active (not an open-circuit) for  $\,t_{\text{start}} \leq t \leq t_{\text{stop}}\,.$