Meter: 3-phase to sequence x,y

eter: 3-phase to sequence x,y	. 1
Description	. 1
1.1 Pins	
1.2 Parameters	
1.3 Input	
1.4 Output	_

1 Description

This device converts the first harmonic of the instantaneous value of 3 phase signals to the (x,y) coordinates of the corresponding zero-, positive-, and negative-sequence phasors in a reference frame rotating at the fundamental frequency.

1.1 Pins

This meter has nine pins:

pin	type	description	units
а	input pin	phase-a input signal	any
b	input pin	phase-b input signal	same as a
С	input pin	phase-c input signal	same as a
zero_x	output pin	x-coordinate of zero-sequence phasor	same as a
zero_y	output pin	y-coordinate of zero-sequence phasor	same as a
pos_x	output pin	x-coordinate of pos-sequence phasor	same as a
pos_y	output pin	y-coordinate of pos-sequence phasor	same as a
neg_x	output pin	x-coordinate of neg-sequence phasor	same as a
neg_y	output pin	y-coordinate of neg-sequence phasor	same as a

1.2 Parameters

The following parameter must be defined:

parameter	description	units
freq	fundamental frequency of the input signal	Hz

1.3 Input

The input pins may be connected to any control signals.

The 3 signals are the instantaneous values of a 3-phase quantity.

1.4 Output

The outputs are the (x,y) phasor representation of the zero-, positive-, and negative-sequence transformations of the instantaneous values of the 3-phase input signals. The (x,y) coordinates are the x-axis and y-axis projections of the phasors on a reference frame rotating at the fundamental frequency.

The (x,y) coordinates of the phasors in that reference frame are calculated over a sliding time window of period equal to 1/freq, as follows.

The (x,y) coordinates of the first harmonic of each input signal k are calculated as

$$\begin{aligned} x_k &= \frac{2}{\text{period}} \cdot \int\limits_{t-\text{period}}^t \text{in}_k(t) \cdot \cos(2\pi \cdot \text{freq} \cdot t) \cdot \text{d}t \\ y_k &= \frac{2}{\text{period}} \cdot \int\limits_{t-\text{period}}^t -\text{in}_k(t) \cdot \sin(2\pi \cdot \text{freq} \cdot t) \cdot \text{d}t \end{aligned}$$
 (1)

where the negative sign for *y* follows the engineering convention for an inductive (lagging) current to have a negative angle when phasor rotation is counterclockwise.

The (x,y) coordinates of the zero-sequence transformation are calculated as

seq0_x =
$$\frac{1}{3} \cdot (x_a + x_b + x_c)$$

seq0_y = $\frac{1}{3} \cdot (y_a + y_b + y_c)$ (2)

The (x,y) coordinates of the positive-sequence transformation are calculated as

$$\begin{split} &\text{seq1_x} = \frac{1}{3} \cdot \left(x_a + r x_b + r^2 x_c \right) \\ &\text{seq1_y} = \frac{1}{3} \cdot \left(y_a + r y_b + r^2 y_c \right) \end{split} \tag{3}$$

The (x,y) coordinates of the negative-sequence transformation are calculated as

$$seq2_{x} = \frac{1}{3} \cdot (x_{a} + r^{2}x_{b} + rx_{c})$$

$$seq2_{y} = \frac{1}{3} \cdot (y_{a} + r^{2}y_{b} + ry_{c})$$
(4)

where r represents a phasor rotation of $2\pi/3$, and r^2 a rotation of $4\pi/3$.