Meter: 3-phase to positive sequence polar

Neter : 3-phase to positive sequence polar	1
Description	
1.1 Pins	
1.2 Parameters	
1.3 Input.	
1.4 Output	

1 Description

This device converts the first harmonic of the instantaneous value of 3 phase signals to the polar coordinates of the corresponding positive-sequence phasor in a reference frame rotating at the fundamental frequency.

1.1 Pins

This meter has five pins:

pin	type	description	units
а	input pin	phase-a input signal	any
b	input pin	phase-b input signal	same as a
С	input pin	phase-c input signal	same as a
mag	output pin	magnitude of pos-sequence phasor	same as a
rad	output pin	angle of pos-sequence phasor	rad

1.2 Parameters

The following parameter must be defined:

parameter	description	units
freq	fundamental frequency of the input signal	Hz

1.3 Input

The input pins may be connected to any control signals.

The 3 signals are the instantaneous values of a 3-phase quantity.

1.4 Output

The output is the polar phasor representation of the positive-sequence transformation of the instantaneous values of the 3-phase input signals. The polar coordinates are the magnitude and angle of that phasor in a reference frame rotating at the fundamental frequency.

The coordinates of the phasor in that reference frame are calculated over a sliding time window of period equal to 1/freq, as follows.

The (x,y) coordinates of the first harmonic of each input signal k are calculated as

$$\begin{aligned} x_k &= \frac{2}{\text{period}} \cdot \int\limits_{t-\text{period}}^t \text{in}(t) \cdot \cos(2\pi \cdot \text{freq} \cdot t) \cdot \text{d}t \\ y_k &= \frac{2}{\text{period}} \cdot \int\limits_{t-\text{period}}^t -\text{in}(t) \cdot \sin(2\pi \cdot \text{freq} \cdot t) \cdot \text{d}t \end{aligned}$$
 (1)

where the negative sign for *y* follows the engineering convention for an inductive (lagging) current to have a negative angle when phasor rotation is counterclockwise.

The (x,y) coordinates of the positive-sequence transformation are calculated as

$$seq1_x = \frac{1}{3} \cdot \left(x_a + rx_b + r^2 x_c \right)$$

$$seq1_y = \frac{1}{3} \cdot \left(y_a + ry_b + r^2 y_c \right)$$
(2)

where r represents a phasor rotation of $2\pi/3$, and r^2 a rotation of $4\pi/3$.

The conversion to polar coordinates is calculated as

magnitude =
$$\sqrt{\text{seq1}_x^2 + \text{seq1}_y^2}$$

angle = $\tan^{-1} \left(\frac{\text{seq1}_y}{\text{seq1}_x} \right)$ (3)

The phasor magnitude is the peak amplitude, not the RMS value. The phasor angle is expressed in radians.