
Meter: 3-phase to positive sequence x,y

Meter: 3-phase to positive sequence x,y	. 1
1 Description	
1.1 Pins	.1
1.2 Parameters	.1
1.3 Input	.1
1.4 Output	.1

1 Description

This device converts the first harmonic of the instantaneous value of 3 phase signals to the (x,y) coordinates of the corresponding positive-sequence phasor in a reference frame rotating at the fundamental frequency.

1.1 Pins

This meter has five pins:

pin	type	description	units
а	input pin	phase-a input signal	any
b	input pin	phase-b input signal	same as a
С	input pin	phase-c input signal	same as a
х	output pin	x-coordinate of pos-sequence phasor	same as a
у	output pin	y-coordinate of pos-sequence phasor	same as a

1.2 Parameters

The following parameter must be defined:

parameter	description	units
freq	fundamental frequency of the input signal	Hz

1.3 Input

The input pins may be connected to any control signals.

The 3 signals are the instantaneous values of a 3-phase quantity.

1.4 Output

The output is the (x,y) phasor representation of the positive-sequence transformation of the instantaneous values of the 3-phase input signals. The (x,y) coordinates are the x-axis and y-axis projections of that phasor on a reference frame rotating at the fundamental frequency.

The (x,y) coordinates of the phasor in that reference frame are calculated over a sliding time window of period equal to 1/freq, as follows.

The (x,y) coordinates of the first harmonic of each input signal k are calculated as

$$x_{k} = \frac{2}{\text{period}} \cdot \int_{t-\text{period}}^{t} \text{in}_{k}(t) \cdot \cos(2\pi \cdot \text{freq} \cdot t) \cdot dt$$

$$y_{k} = \frac{2}{\text{period}} \cdot \int_{t-\text{period}}^{t} -\text{in}_{k}(t) \cdot \sin(2\pi \cdot \text{freq} \cdot t) \cdot dt$$
(1)

where the negative sign for *y* follows the engineering convention for an inductive (lagging) current to have a negative angle when phasor rotation is counterclockwise.

The (x,y) coordinates of the positive-sequence transformation are calculated as

$$seq1_x = \frac{1}{3} \cdot \left(x_a + rx_b + r^2 x_c \right)$$

$$seq1_y = \frac{1}{3} \cdot \left(y_a + ry_b + r^2 y_c \right)$$
(2)

where r represents a phasor rotation of $2\pi/3$, and r^2 a rotation of $4\pi/3$.