Meter: sequence to 3-phase polar

 Meter : sequence to 3-phase polar
 1

 1 Description
 1

 1.1 Pins
 1

 1.2 Parameters
 2

 1.3 Input
 2

 1.4 Output
 2

1 Description

This device converts the zero-, positive-, and negative-sequence phasor transformation of a 3-phase quantity to the polar coordinates of the phasor representation of each phase in a reference frame rotating at the fundamental frequency. By definition, only the first harmonic of the 3 phase quantities are considered.

1.1 Pins

This meter has twelve pins:

pin	type	description	units
zero_mag	input pin	magnitude of zero-sequence phasor	any
zero_rad	input pin	angle of zero-sequence phasor	rad
pos_mag	input pin	magnitude of pos-sequence phasor	same as zero_mag
pos_rad	input pin	angle of pos-sequence phasor	rad
neg_mag	input pin	magnitude of neg-sequence phasor	same as zero_mag
neg_rad	input pin	angle of neg-sequence phasor	rad
a_mag	output pin	magnitude of phase-a phasor	same as zero_mag
a_rad	output pin	angle of phase-a phasor	rad
b_mag	output pin	magnitude of phase-b phasor	same as zero_mag
b_rad	output pin	angle of phase-b phasor	rad
c_mag	output pin	magnitude of phase-c phasor	same as zero_mag
c_rad	output pin	angle of phase-c phasor	rad

1.2 Parameters

No parameters are required for this device.

1.3 Input

The input pins may be connected to any control signals.

The 3 signals are the instantaneous values of a 3-phase quantity.

1.4 Output

The outputs are the polar phasor representation of the zero-, positive-, and negative-sequence transformations of the instantaneous values of the 3-phase input signals. The polar coordinates are the magnitude and angle of the phasors in a reference frame rotating at the fundamental frequency.

The outputs are the polar representation of the zero-, positive-, and negative-sequence transformations of the instantaneous values of the 3-phase input signals.

The transformation from sequence to phase is calculated as follows.

$$\begin{bmatrix} S_{a} \\ S_{b} \\ S_{c} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^{2} & a \\ 1 & a & a^{2} \end{bmatrix} \begin{bmatrix} S_{0} \\ S_{1} \\ S_{2} \end{bmatrix}$$
 (1)

This is equivalent to the matrix notations:

$$S_{abc} = AS_{012} \tag{2}$$

Where \mathbf{S}_{abc} is in phase domain and \mathbf{S}_{012} is in sequence domain and a is a phasor rotation of $2\pi/3$. The real and imaginary parts of each signal S represent the x and y coordinates which are used to calculate the magnitude and angle:

magnitude
$$= \sqrt{x^2 + y^2}$$

angle $= \tan^{-1} \left(\frac{y}{x} \right)$ (3)

The phasor magnitude is the peak amplitude, not the RMS value. The phasor angle is expressed in radians.