Transformation: sequences to 3-phase (xy)

leter : sequence to 3-phase x,y	. 1
Description	
1.1 Pins	
1.2 Parameters	.2
1.3 Input	.2
1.4 Output	

1 Description

This device converts the zero-, positive-, and negative-sequence phasor transformation of a 3-phase quantity to the (x,y) coordinates of the phasor representation of each phase in a reference frame rotating at the fundamental frequency. By definition, only the first harmonic of the 3 phase quantities are considered.

1.1 Pins

This meter has twelve pins:

pin	type	description	units
zero_x	input pin	x-coordinate of zero-sequence phasor	any
zero_y	input pin	y-coordinate of zero-sequence phasor	same as zero_x
pos_x	input pin	x-coordinate of pos-sequence phasor	same as zero_x
pos_y	input pin	y-coordinate of pos-sequence phasor	same as zero_x
neg_x	input pin	x-coordinate of neg-sequence phasor	same as zero_x
neg_y	input pin	y-coordinate of neg-sequence phasor	same as zero_x
a_x	output pin	x-coordinate of phase-a phasor	same as zero_x
a_y	output pin	y-coordinate of phase-a phasor	same as zero_x
b_x	output pin	x-coordinate of phase-b phasor	same as zero_x
b_y	output pin	y-coordinate of phase-b phasor	same as zero_x
c_x	output pin	x-coordinate of phase-c phasor	same as zero_x
c_y	output pin	y-coordinate of phase-c phasor	same as zero_x

1.2 Parameters

No parameters are required for this device.

1.3 Input

The input pins may be connected to any control signals.

The 3 signals are the instantaneous values of a 3-phase quantity.

1.4 Output

The outputs are the (x,y) phasor representation of the zero-, positive-, and negative-sequence transformations of the instantaneous values of the 3-phase input signals. The (x,y) coordinates are the x-axis and y-axis projections of the phasors on a reference frame rotating at the fundamental frequency.

The transformation from sequence to phase is calculated as follows.

$$\begin{bmatrix} S_{a} \\ S_{b} \\ S_{c} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^{2} & a \\ 1 & a & a^{2} \end{bmatrix} \begin{bmatrix} S_{0} \\ S_{1} \\ S_{2} \end{bmatrix}$$
 (1)

This is equivalent to the matrix notations:

$$S_{abc} = AS_{012} \tag{2}$$

Where \mathbf{S}_{abc} is in phase domain and \mathbf{S}_{012} is in sequence domain and a is a phasor rotation of $2\pi/3$. The real and imaginary parts of each signal S represent the x and y outputs respectively.