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Objective

This document presents generic EMT-type models for full size converter (FSC) and Doubly-fed
induction generator (DFIG) based wind parks (WPs) that can be used for stability analysis and
interconnection studies. These models are developed in EMTP Version 3.4 and above.
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1 INTRODUCTION

The large scale wind parks (WPs) employ variable speed wind turbines (WTs) in order to increase
energy capture, reduce drive train stresses and comply with grid code requirements. Doubly-fed
induction generator (DFIG) and full size converter (FSC) WTs fall into this category.

Interconnecting a large-scale WP into the bulk power system has become a more important issue
due to its significant impact on power system transient behavior. Failure to perform proper
interconnection studies could lead to not only non-optimal designs and operations of WPs, but also
severe power system operation and even stability problems. Manufacturer-specific models of WPs are
typically favored for the interconnection studies due to their accuracy. However, these WP models have
been typically delivered as black box models and their usage is limited to the terms of nondisclosure
agreements. Utilities and project developers require accurate generic WP models to perform the
preliminary grid integration studies before the actual design of the WP is decided. Accurate generic WP
models will also enable the researchers to identify the potential WP grid integration issues and propose
necessary countermeasures.

This document presents EMT-type models for FSC and DFIG based WPs that can be used for
stability analysis and interconnection studies. In the aggregated WP model, the collector grid and the
WTs are represented with their aggregated models. However, the model includes the wind park
controller to preserve the overall control structure in the WP. The WT and the WP control systems
include the necessary nonlinearities, transient and protection functions to simulate the accurate
transient behavior of the WP to the external power system disturbances.

The first part of this document briefly presents the FSC and DFIG based WPs. The developed
EMTP models are presented in the second part. The last part presents the illustrative simulation
examples.
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2 WIND PARKS WITH VARIABLE SPEED WIND TURBINES

A simplified single line diagram of a typical wind park is shown in Figure 1. In wind parks, WTs are
connected through a step-up transformer (WT transformer) to the medium voltage (MV) collector bus
by means of subterranean cables. The collector bus voltage is stepped up to the high voltage (HV) level
by means of wind park transformer. Depending on the selection of the function, either the reactive power
or voltage or power factor at the point of interconnection (POl in Figure 1) is controlled by a central wind
park controller (WPC) located at wind park substation. The wind park transformer usually contains an
on load tap changer (OLTC) to maintain nominal voltage at MV collector bus.

The available reactive power at the point of interconnection (POI) is usually much less than the
specified WT capacity due to the reactive power losses at the WT transformers, the medium voltage
(MV) collector grid and the wind park transformer. Therefore, reactive power compensation may be
required to fulfill the grid code requirements regarding power factor control [1].

The EMT model presented in this document does not include the wind park transformer OLTC and
any reactive power compensation device (such as Static VAR Compensator).

MV

Collector Bus Feeder F1 T WT T
| I |
POl HV /MV X — —
\ Wind Park + 4
Transformer | |
HV Grid _ — — '
fffffffffffffffffffffffff o T
Other MV feeders

Figure 1 Simplified single-line diagram of a typical wind park

2.1 Variable Speed Wind Turbines

As the size of the WTs increase, the WT technology has switched from fixed speed to variable
speed. The drivers behind these developments are mainly increasing the energy capture, reducing the
drive train stresses and ability to comply with the grid code requirements. Most common configurations
are FSC and DFIG WTs [2].

2.1.1 Wind Turbine Aerodynamics

The wind turbine extracts kinetic energy from the swept area of the blades. The mechanical power
extracted from the wind is given by [2]:

Pt:%p Av® C, (L,B) (1)

where p is the air density (approximately 1.225 kg/m3), A is the swept area of the rotor (m?), v is
upwind free wind speed (m/s) and Cp is the power coefficient.
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is a characteristic of the WT and is usually provided as a set of curves (C, curves)relating C, to

C
P
tip-speed-ratio ) with the blade pitch angle B as a parameter, as shown in Figure 2 [3]. The tip-speed-
ratio is defined as
A =(oR)/v (2)

where o, is the WT rotational speed (rad/s) and R is the blade radius (m).

Figure2  Wind power C, curves

At a specific wind speed and pitch angle, there is a unique WT rotational speed that achieves the
hence the maximum mechanical power as shown in Figure 2.

maximum power coefficient C,_,, .
The mathematical model of the WT aerodynamics is shown in Figure 3. In this modeling approach,
the C, curves of the WT are fitted with high order polynomials on 2 and 8, as follows

C,y (18)= X oy 3)

n
=1 j=1

n . .

B———= C,(1B)= iZau%'B’

=1 j=1

o, }\‘“
L A=——om Cp
P

- 10) v

v
£
Py

Yy

Py =2 PAVSCy (1) [~

Figure 3  Wind turbine model for aerodynamics
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2.1.2 Mechanical System

The mechanical system is constituted by the blades linked to the hub, coupled to the slow shaft,
which is linked to the gearbox which multiplies the rotational speed of the fast shaft connected to the
generator. Although the mechanical representation of the entire WT is complex, representing the
fundamental resonance frequency of the drive train using its two mass model is sufficient as the other
resonance frequencies are much higher and their magnitudes are lower [4]. By referring all magnitudes
in the fast shaft (generator side), the state space equations of the two mass system can be written as

B, = (1/Jt)('T't Dy (@ — g )~ Dy & —Kyg (8 — eg)) (4)
6t = Oy (5)
Qg = (1/Jg)(th (8 0y ) ~Dyg (g — @ ) Dy o —Tg) (6)
9g = g (7)

where ®,, 6, 'T't are the rotor speed (rad/s), angular position of the rotor (rad) and the aerodynamic
torque (Nm) of the WT referred to the fast shaft, respectively. o,, 04, T, are the speed, angular

position and electromagnetic torque of the generator, respectively. J; and D, are the moment of inertia

(kgm?) and absolute speed self-damping coefficient (Nms/rad) of the WT referred to the fast shaft,
respectively. Jq and Dy are the moment of inertia and absolute speed self-damping coefficient of the

generator, respectively. th and Dtg are the equivalent spring constant (Nm/rad) and mutual damping

coefficient (Nms/rad), between the WT and the generator, respectively.

2.1.3 Control of Variable Speed Wind Turbines

The control of variable speed WT calculates the generator power output and the pitch angle in
order to achieve extracting the maximum energy from the wind and keeping the WT in safe operating
mode. The WT remains shut down when the wind speed is too low for energy production (i.e. below
cut-in speed v ). When the wind speed is above v and below rated speed v the pitch

angle is kept at zero (B =0°) and the power reference of the WT generator is produced by the MPPT

cut—in cut—in rated
(maximum power point tracking) function to achieve optimal operation. The conventional method is

calculating the power reference using a cubic function of the turbine angular speed.
3
I:>ref = Kopt O (8)
where

Kopt = (1/2)Cp—max p A(R /7"opt )3 (9)

When the wind speed is above v the pitch angle is increased by the pitch controller (see

rated
Figure 4) in order to limit the mechanical power extracted from the wind and reduce the mechanical
loads on the drive train. The pitch controller should ensure zero pitch angle (B = 0°) for the wind speeds

below v 44 [5]. When the wind speed is above cut-off speed v, .+, the WT is shut down.
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Figure 4  Schematic diagram of pitch control

2.2 Reactive Power Control in Wind Parks with Variable Speed Wind
Turbines

The active power at the point of interconnection (POI in Figure 1) depends on the wind conditions
at each WT inside the WP and determined by MPPT function (see (8)) when the wind speed is between
Ugut_in @Nd v 4eq- HOWever, according to customary grid code requirements, the WP should have a

central wind park controller (WPC) to control the reactive power at POI.
The WP reactive power control is based on the secondary voltage control concept [6]. At primary
level, the WT controller (WTC) monitors and controls its own positive sequence terminal voltage ( V,, )

with a proportional voltage regulator. At secondary level, the WPC monitors the reactive power at POI
(Qpg ) and control it by modifying the WTC reference voltage values (V') via a proportional-integral

(PI) reactive power regulator as shown in Figure 5. In Figure 5 and hereafter, all variables are in pu
(unless otherwise stated) and the apostrophe sign is used to indicate the reference values coming from
the controllers.

Although not shown in Figure 5, the WPC may also contain voltage control (V-control) and power

factor control (PF-control) functions. When the WPC is working under V-control function, the reactive
power reference in Figure 5 (Qpq, ) is calculated by an outer proportional voltage control, i.e.

Qpo| = KVpoi ( POI ~ V50|) (1 0)
where V3, is the positive sequence voltage at POl and Kypoi is the WPC voltage regulator gain.

When WPC is working under PF-control function, Qg is calculated using the active power at POI
(Psoy) and the desired power factor at POI ( pfy, ).

When a severe voltage sag occurs at POI (due to a fault), the PI regulator output ( AU') is kept
constant by blocking the input ( Qpg, —Qp, ) to avoid overvoltage following the fault removal.
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Figure 5 Reactive power control at POl (Q-control function)

2.3 Full Size Converter (FSC) Wind Turbines

FSC WT may or may not have a gearbox and a wide range of electrical generators such as
asynchronous, conventional synchronous and permanent magnet can be employed. As all the WT
power is transferred through an ac-dc-ac converter system, the specific characteristics and dynamics
of the electrical generator are effectively isolated from the grid [7].

The considered topology in this paper is shown in Figure 6. It uses a permanent magnet
synchronous generator (PMSG) and the ac-dc-ac converter system consists of two voltage source
converters (VSCs): machine side converter (MSC) and grid side converter (GSC). The dc resistive
chopper is used for the dc bus overvoltage protection. Although not shown in Figure 6, a line inductor
(choke filter) and an ac harmonic filter are used at the GSC to improve the power quality.

Wind
turbine
Stator -Side Grid-Side
Gearbox Converter Converter

J@ +J£§ @L »— Grid

Figure 6 FSC wind turbine configuration

The simplified diagram of FSC WT control and protection system is shown in Figure 7. The
sampled signals are converted to per unit and filtered at “Measurements & Filters” block. The input
measuring filters are low-pass (LP) type. “Compute Variables” block computes the variables used by
the FSC WT control and protection system. “Pitch Control” block (see Figure 4) limits the mechanical
power extracted from the wind by increasing the pitch angle when the wind speed is above its rated.
“Protection System” block contains cut-in and cut-off speed relays, low voltage and overvoltage relays,
MSC and GSC overcurrent protections and dc resistive chopper control.

The control of the FSC WT is achieved by controlling the MSC and GSC utilizing vector control
techniques. Vector control allows decoupled control of real and reactive powers. The currents are
projected on a rotating reference frame based on either ac flux or voltage. Those projections are
referred to d- and g- components of their respective currents. In flux-based rotating frame, the g-
component corresponds to real power and the d-component to reactive power. In voltage-based rotating
frame (90° ahead of flux-based frame), the d and q components represent the opposite.
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The control scheme is illustrated in Figure 8. In this figure, iy, and iy, are the g- and d-axis currents
of the MSC, i,4 and iy, are the g- and d-axis currents of the GSC, V, is the dc bus voltage, T is the
electromagnetic torque of the PMSM, and V,, is the positive sequence voltage at FSC transformer MV

terminal.

In the control scheme presented in Figure 8, the MSC operates in the stator flux reference (SFR)
frame and the GSC operates in the stator voltage reference (SVR) frame. iy, is used to control T, iy

is used to maintain Vg, and iy, is used to control V.

Both MSC and GSC are controlled by a two-level controller. The slow outer control calculates the
reference dg-frame currents (iy,, igm> lgg @nd iqg) @and the fast inner control allows controlling the
converter ac voltage reference that will be used to generate the modulated switching pattern.

The reference for PMSM electromagnetic torque is given by MPPT control (T" =K, ootz ) and the

reference for the positive sequence voltage at FSC transformer MV terminal (V') is calculated by the
WPC (see Figure 5).

WT easurements Compute | (WSC )
Variables I & Filters Variables — MSC
—el Control

Command
f GSC

L— GSC
Contr0| Command

Pitch

— Pitch
Contr0| Command
==> Chopper ON/OFF
==> WT Breaker Open/Close

(Protection

System

Figure 7  Simplified diagram of FSC WT control and protection system

MSC GSC
A~ AC 1 DC v
DC T AC
4 v ’qm Vdm v 'dg 4 v ’qg 4
e | ] o
]
; Inner
i MLb Control
I Sy S 54
i’qm l-rdm l’dg -
Outer Idq limiter

maximum power Wg V’dc V'=(1+AT1)
tracking point

Figure 8  Schematic diagram of FSC WT control
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2.4 Doubly-Fed Induction Generator (DFIG) Wind Turbines

In WTs with DFIG, the stator of the induction generator (IG) is directly connected to the grid and
the wound rotor is connected to the grid through an ac-dc-ac converter system as shown in Figure 9.
The ac-dc-ac converter system consists of two voltage source converters (VSCs): rotor side converter
(RSC) and grid side converter (GSC). A line inductor and shunt harmonic ac filters are used at the GSC
to improve power quality (not shown in Figure 9). A crowbar is used to protect the RSC against
overcurrent and the dc capacitor against overvoltage. During crowbar ignition, the RSC is blocked and
the IG consumes reactive power. To avoid the crowbar ignition during faults, the dc resistive chopper
is widely used to limit the dc voltage. DFIG WT also includes the protection functions presented in
Section 2.3.

Wind Stat I, . P,
turbine ator power —p
b Grid
Gearbox
Slip rings Step down
transformer

: Ve J'fg
________ 0
—bh J@ L ﬁ e
UL TJ Rotor power
Crow-bar  pior-Side  Grid-Side
Converter Converter

Figure 9 DFIG wind turbine configuration

The overall control and protection scheme in DFIG WT is similar to the one in FSC WT shown in
Figure 7. The sampled signals are converted to per unit and filtered at the “Measurements & Filters”
block. The input measuring filters are low-pass (LP) type. The “Compute Variables” block computes the
variables used by the DFIG WT control and protection system. The “Pitch Control” block (see Figure 4)
limits the mechanical power extracted from the wind by increasing the pitch angle when the wind speed
is above its rated. However, the “Protection System” block contains crowbar protection in addition to
the cut-in and cut-off speed relays, low voltage and overvoltage relays, RSC and GSC overcurrent
protections and dc resistive chopper control. It should be noted that, the crowbar protection is not
expected to operate unless the dc resistive chopper protection is deactivated.

The DFIG converter control scheme is illustrated in Figure 10. In this figure, i, and iy, are the g-

and d-axis currents of the RSC, i,q and iy, are the g- and d-axis currents of the GSC, V. is the dc

bus voltage, P is the active power output of the DFIG, and V,, is the positive sequence voltage at

DFIG transformer MV terminal. The RSC operates in SFR frame and the GSC operates in SVR frame.
i @nd iy, are used to control P and V, , respectively. On the other hand, iy is used to maintain the

dc bus voltage (V. ) and iyq is used to support the grid with reactive power during faults.

9

Both RSC and GSC are controlled by a two-level controller. The slow outer control calculates the
reference dq-frame currents (ig,, iy, lyg @and izg) and the fast inner control allows controlling the
converter ac voltage reference.

The reference for DFIG active power output ( P') is given by MPPT control (see (8)). The reference
for DFIG positive sequence voltage (V') is calculated by the WPC (see Figure 5).
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Figure 10 Schematic diagram of DFIG WT control
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3 EMTP IMPLEMENTATION

The developed wind park model setup in EMTP is encapsulated using a subcircuit with a
programmed mask as illustrated in Figure 11 and Figure 12. The model consists of a wind turbine, a
LV/MV wind turbine transformer, equivalent PI circuit of the collector grid and a MV/HV wind park
transformer.

The first tab of the wind park mask enables the user to modify the general wind park parameters
(number of WTs in the WP, POI and collector grid voltage levels, collector grid equivalent and zig-zag
transformer parameters (if it exists)), the general wind turbine parameters (WT rated power, voltage
and frequency), and wind park operating conditions (number of WTs in service, wind speed WPC
operating mode and reactive power (or power factor) at POI).

The second and the third tab is used for MV/HV WP transformer and LV/MV WT transformer
parameters, respectively.

The forth tab is used to modify the parameters of converter control system given below:
- Sampling rate and PWM frequency at WT converters

- WT input measuring filter parameters,

- MSC (or RSC) control parameters,

- GSC control parameters,

- Coupled / Decoupled sequence control option for GSC

The fifth tab is used to modify the parameters of voltage sag, chopper, crowbar (for DFIG only)
and overcurrent protections. The sixth tab is used to modify the WPC parameters.

The associated JavaScript file (DFIG_WP_Parameters.dwj and FC_WP_Parameters.dwj, for
DFIG and FSC based WP, respectively) computes the internal model parameters. It also contains the
data that is not accessible from the mask, such as the data for WT aerodynamics, mechanical system
and pitch control.

The wind farm transformer connection is wye-grounded on the HV side and Delta on the MV side.
The WT transformer connection is wye-grounded on the LV side and Delta on the MV side. In both
transformers the magnetizing branch is located at the Delta connection side.

FFC_WP1

Figure 11 FSC based wind park device, mask parameters shown in Figure 12
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Figure 12 FSC based wind park device mask

3.1 Detailed and Average Value Models

The EMTP diagram of the wind turbine ac-dc-ac converter system detailed model (DM) is shown
in Figure 13. A detailed two-level topology (Figure 14.a) is used for the VSCs in which the valve is
composed by one IGBT switch, two non-ideal (series and anti-parallel) diodes and a snubber circuit as
shown in Figure 14.b. The non-ideal diodes are modeled as non-linear resistances. The DC resistive
chopper limits the DC bus voltage and is controlled by the protection system block.

The PWM block in the ac-dc-ac converter system EMTP diagram receives the three-phase
reference voltages from converter control and generates the pulse pattern for the six IGBT switches by
comparing the voltage reference with a triangular carrier wave. In a two-level converter, if the reference
voltage is higher than the carrier wave then the phase terminal is connected to the positive DC terminal,
and if it is lower, the phase terminal is connected to the negative DC terminal. The EMTP diagram of
the PWM block is presented in Figure 15.
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Figure 13 EMTP® diagram of ac-dc-ac converter system block in WT models (detailed model
version)
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Figure 15 PWM control block

The DM mimics the converter behavior accurately. However, the simulation of such switching
circuits with variable topology requires many time consuming mathematical operations and the high
frequency PWM signals force small simulation time step usage. These computational inefficiencies can
be eliminated by using the average value model (AVM) which replicates the average response of
switching devices, converters and controls through simplified functions and controlled sources [8].
AVMs have been successfully developed for wind generation technologies [9], [10]. The AVM obtained
by replacing the DM of converters with voltage-controlled sources on the ac side and current-controlled
sources on the dc side, as shown in Figure 16 and Figure 17.

The forth (converter control) tab of the wind park device mask (see Figure 12) enables used AVM-
DM selection.

EMTP-EMTPWorks 2021-02-18 Page 18 of 61



VSC AVM1 VSC AVM2

AC_GSC [X et A\, C VSC-AVM VSC-AVM AC—— AC_MSC

N +
Vref_GSC i+ N Vref_MSC
varef Cde =~ DX vae varef|
vbref IGBT_chopper, vbref]
veref X veref]
Chopper

block_GSC[X>——{Blocked N N Blocked——<X]block_MSC

Rchopper

Figure 16 EMTP® diagram of ac-dc-ac converter system block in WT models (average value
model version)
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Figure 17 AVM Representation of the VSC

3.2 FSC based Wind Park Model in EMTP®
The EMTP® diagram of the FSC based Wind Park is shown in Figure 18. It is composed of
- “Wind Turbine” block,
- “WT Electrical System” block,
- “WT Control System” block,
- “WP Control System” block,
- Pl circuit that represents equivalent collector grid,
- Wind park transformer,
- Initialization Source with load flow (LF) constraint.

The “Wind Turbine” block contains wind turbine aerodynamics given in Figure 3 and the
mechanical system model given by (4) - (7).

The initialization source contains the load flow constraint. It also prevents large transients at
external network during initialization of WT electrical and control systems.
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Figure 18 EMTP® diagram of the FSC based Wind Park

3.2.1 Wind Park Control System Block

The function of WPC is to adjust the WT controller voltage reference in order to achieve desired
reactive power at POI (see Figure 5). The “WP Control System” block consists a measuring block, an
outer voltage (or power factor) control and a slow inner proportional-integral reactive power control as
shown in Figure 19. The measuring block receives the voltages and the currents at POI (i.e. HV terminal
of wind farm transformer) and calculates the voltage magnitude, active power and reactive power. The
reactive power reference for the inner proportional-integral reactive power control is produced either by
the outer proportional voltage control (V-control) or by the outer power factor control (pf-control) unless
Q-control is selected.

Similar to the “Wind Turbine” block, the “WP Control System” block is identical in both FSC and
DFIG based WPs.

3.2.2 FSC Wind Turbine Electrical System Block

The EMTP diagram of the “WT Electrical System” block is composed of PMSM, ac-dc-ac converter
system, choke filter, shunt ac harmonic filters and WT transformer, as shown in Figure 20.

The measurement blocks are used for monitoring and control purposes. The monitored variables
are MSC, GSC and total FC currents, and FC terminal voltages. The dc voltage is also monitored (in
ac-dc-ac converter system block) as well as the PMSM electromagnetic torque. All variables are
monitored as instantaneous values and meter locations and directions are shown in Figure 20.

The ac-dc-ac converter system block details have been presented in Section 3.1.

EMTP-EMTPWorks 2021-02-18 Page 20 of 61



Initialize

S_meas| Page Spoi  Qref| Page |Qref
Q_meas| Page———Qpoi  Vref Page Vref
P_meas| Page——|Vpoi PFref——— &l PFref
RC Page RC
RV Page RV
PQV Measurement
WPC PQV
VI——=@888l Vpos meas  S_meas|Page Spoi
Vpoi s\/poi P Page |P_meas P_meas| Page—bD Ppoi
Ipoi 1lpoi Q Page Q_meas Q_meas| Page——D Qpoi
S Page S _meas Vpos_meas |jiBlge—> Vpoi
e A
( SIGN(u[1]) h
ST
U]/ #WPC_Kvi SQRT(1-u[1]*2) 1
prref | EEEP D 1w p D2 PRODP>———~Page |Qref RF
D3
S_meas[iPage [PROD]
Outer V-Control Outer PF-Control
. /L J
p
Pl control1
max
#dUmax# min
#dUmint ] Outer Q-Control
RC| Page RC g step
RV/| Page RV SO
#C_select# Kp
] #WPC_KiQ# Ki
Qref, _Page D1 t
aref_veillip——12 ou TE o 2 > duref]
Qref RF Page—>3 u age ! select
7o
.Hﬂb*“j
Q_meas| Page 1+ (t>0.75)
Vpos_meas [IBEGe Vpoi_pos  Block_Input
BLOCK_INPUT
. - J
Figure 19 EMTP® diagram of “WP Control System” block
choke filter
T e 8 ac-dc-ac g M_mech_init
2 5 = E w_sm_fit CJ—1 1 _ o, —<X Tsh
converter system o I—] o
———————\ - t<0.3s
{ B_to_B_conwertert
FC_transformer  rs . Alonoke

o35

/

WT Transformer

Viabe_grid

(
I
I fiter ,

- -

shunt ac
harmonic filters

100M
dummyR

X

IX}F
R>—

VoG
chopper O——

Vref_gsc
Vref_msd]

block_gsc O——

block_ms:

Figure 20 EMTP® diagram of FSC “WT Electrical System” block
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The “shunt ac harmonic filters” block includes two band-pass filters as shown in Figure 21. These
filters are tuned at switching frequencies harmonics n1 and n2. The filter parameters are computed as

c, :% (11)
L, =% (12)
- (2ﬁf)':1llv t|_f1 Q (13)
C, =Cy, (14)

G i 19
R,y = 202 b2 2 (16)

wt

where U is the rated LV grid voltage, Qg is the reactive power of the filter and Q is the quality factor
with a value of 1000.

The switching frequencies harmonics n1 and n2 are as follows

Ny = form_gsc / fs (17)
n, =2n, (18)

where fopy_gse IS the PWM frequency at GSC and f; is the nominal frequency.

Figure 21 “shunt ac harmonic filter” block

3.2.3 FSC Wind Turbine Control System Block

The EMTP diagram of the FSC WT control system block is shown in Figure 22. The sampled
signals are converted to pu and filtered. The sampling frequencies are set to 12.5 kHz for both MSC
and GSC from device mask as shown in Figure 12. The “sampling” blocks are deactivated in AVM due
to large simulation time step usage. In the generic model, 2" order Bessel type low pass filters are
used. The cut-off frequencies of the filters are set to 2.5 kHz for both MSC and GSC. However, the
order (up to 8™ order), the type (Bessel and Butterworth) and the cut-off frequencies of the low pass
filters can be modified from the device mask as shown in Figure 12. The “MSC Compute Variables” and
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“GSC Compute Variables” blocks do the dq transformation required for the vector control. The MSC
control (“PMSG Control” block) operates in the stator flux reference frame and the GSC (“Grid Control”
block) operates in the stator voltage reference frame. The pitch control is activated when the wind speed
increases above the rated value and given in Figure 4. The protection block includes the over/under
voltage relay, the deep voltage sag detector, the dc chopper control and overcurrent detector.
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Figure 22 EMTP® diagram of FSC “WT Control System” block
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The transformation matrix T in (19) transforms the phase variables into two quadrature axis (d and
g reference frame) components rotating at synchronous speed o =d6/dt. The phase angle 0 of the
rotating reference frame is derived by the double synchronous reference frame (DSRF) PLL [11] (see
Figure 23) from the FSC WT terminal voltages allowing the synchronization of the control parameters
with the system voltage. In matrix the following T, the direct axis d is aligned with the stator voltage.

cos(mt)
T

1/2

EMTP-EMTPWorks 2021-02-18

—| —sin(wt)

cos(wt—2n/3)
—sin(ot—2n/3)

1/2

cos(wt +2n/

1/2

3t)

—sin(ot+2n/3)

(19)
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Figure 23 EMTP® diagram of DSRF PLL

3.2.3.1 FSC Machine Side Converter Control

The EMTP diagram of the “PMSG Control” block is shown in Figure 24. The function of the MSC is
to control the electromagnetic torque of the PMSM.

Outer Current Control Inner Current Control

Figure 24 EMTP® diagram of FSC “PMSG Control” block
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The d-axis current reference is set to zero (i, = 0) to achieve unity power factor. The g-axis current

reference is given by

Ha
Iqm
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where A is the constant flux generated by the permanent magnet and T’ (=K, ®?) is the reference
for PMSM electromagnetic torque given by the MPPT control.

The MSC inner control loop is designed based on internal model control (IMC) method. This
method results dg-frame proportional integral (Pl) or Pl-type controllers, the parameters (gain and
integration time) of which are expressed directly in certain machine parameters and the desired closed-
loop bandwidth. This simplifies the controller design procedure, eliminating or reducing the need for
trial-and-error [12].

The PMSG stator voltages are found from

Vam = _Rsidm - Ld (d idm /dt) + (Dquiqm (21 )

Vam = Rslgm ~Lq (digm /dt) + g (Ligm +2m) (22)

where R is the armature resistance, L, and L, are the d- and g-axis inductances of PMSG.

The iy, and iy, errors are processed by the PI controller to give vy, and v, respectively. To

qm?’

ensure good tracking, feed-forward compensating terms gl iy in (21) and oy (Lgigm +Apy) in(22) are

added. The converter reference voltages become

Vi == (kg + '/ (igm ~igm ) + Oglgiam (23)
Vim == (k3 +k3 /) (igm ~iqm ) + O (Lalgm + 1) (24)
Using IMC [12],
kd + k¢ 0
Fmsc(s) = &Gmsciws) = ° N /S (25)
s 0 kd +k? /s

where G . (s) is the transfer function that describes the link between MSC output current and voltage,

and o, is the bandwidth. G (s) is given by

-1
Giec(s) = {RS P SLJ (26)
The relationship between the bandwidth and the rise time (10%—-90%) is o, =In(9)/t, -
The PI controller parameters are found as
kS = o, Ly (27)
kg = o, L (28)
k? =k9 = o, Ry (29)

The PI controller parameters are calculated for the MSC rise time given in the device mask.

3.2.3.2 FSC Grid Side Converter Control

The function of GSC is maintaining the dc bus voltage V. at its nominal value and controlling the
positive sequence voltage at MV side of FSC WT transformer (V,,, ).The EMTP diagram of the “Grid

Control” block is shown in Figure 25. The GSC control offers both coupled and decoupled sequence

EMTP-EMTPWorks 2021-02-18 Page 25 of 61



control options. The user can select the GSC control option from the device mask as shown in Figure
12.
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Figure 25 EMTP® diagram of FSC “Grid Control” block

3.2.3.2.1 FSC GSC Coupled Control
The g-axis reference current is calculated by the proportional outer voltage control, as follows
o =Ko (V' = Vi) (30)
where K,, is the voltage regulator gain. The reference for MV side of FSC WT transformer positive
sequence voltage (V') is calculated by the WPC (see Figure 5).

The positive sequence voltage at MV side of FSC WT transformer is not directly measured by the
WT controller and it is approximated by

o= (Vi) + (Vo) (31)

where
Viwt = \7d+wt + RterTNt - XtrLJ\rNt (32)
Vaut = Vawt + Rerbwt + Xor b (33)

In (31) - (33), Vgrand Vg, are the d-axis and g-axis positive sequence voltage at MV side of FSC WT

\J

transformer, V;,,and \N/q+wt are the d-axis and g-axis positive sequence voltage at FSC WT terminals
(i.e. the d-axis and g-axis positive sequence voltage at LV side of FSC WT transformer), [, and Lt

are the d-axis and g-axis positive sequence currents of FSC WT (i.e. the d-axis and g-axis positive
sequence currents at LV side of FSC WT transformer), R, and X, are the resistance and reactance

values FSC WT transformer.

The d-axis reference current is calculated by the proportional outer dc voltage control. It is a Pl
controller tuned based on inertia emulation.

ko = 05 (2Hcao ) (34)
k, =2&wp (2Heqe ) (3%)
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where o, is the natural frequency of the closed loop system and ¢ is the damping factor.

Hege = (Ecae/Swt) is the static moment of inertia, Egy. is the stored energy in dc bus capacitor (in
Joules) and S, is the wind park rated power (in VA).

The schematic of the GSC connected to the power system is shown in Figure 26. Z=R+ joL

represents the grid impedance including the transformers as well as the choke filter of the GSC. The
voltage equation is given by

Vane =R igabt:. - L(d igabc /dt> *+ Vgabe (36)
R+ joL ;
]
r Vag — gV

| d C Vog g v, | Power
Vie , System
IJ; ac vcg g ng Ve

J

Figure 26 GSC arrangement

The link between GSC output current and voltage can be described by the transfer function

Gyso(8) = Y/(R+5L) (37)
Using (25), the PI controller parameters of the inner current control loop are found as
k, = oL (38)
k = a R (39)

The PI controller parameters are calculated for the GSC rise time given in the device mask.

Similar to the MSC, the feed-forward compensating terms olg,gelqg +Va-choke and
(—u)Lchokeidg + vq_choke) are added to the d- and g-axis voltages calculated by the PI regulators,
respectively. The converter reference voltages are as follows

Vag = _(kp + ki/S)(i&g —lgg ) + 0L gpokelag + Va-choke (40)
Vag = _(kp + ki/s)(i:qg —lgg ) — 0L gnokeldg * Vg-choke (41)
During normal operation, the controller gives the priority to the active currents, i.e.

lim
dg

i! < IIim — Ilim 2 _ i! 2
qg ~'qg g dg
lim

where lgg , Ig’;‘ and Igm are the limits for d-axis, g-axis and total GSC currents, respectively.

HA
igg <I

(42)

The WTs are equipped with an FRT function to fulfill the grid code requirement regarding voltage
support shown in Figure 27. The FRT function is activated when

‘1 - cht‘ > VErT_ON (43)
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and deactivated when

‘1 - VvJ\r/t‘ < VERT_OFF (44)
after a pre-specified release time tqgr .

When the FRT function is active, the GSC controller gives the priority to the reactive current by
reversing the d- and g-axis current limits given in (42), i.e.

. lim
igg <lag

i < Ilim — Ilim 2 (i 2
dg dg ¢] a9

The EMTP diagram of “Idq reference limiter” and “FRT decision logic” blocks are given in Figure
28 and Figure 29, respectively. The limits for d-axis, g-axis and total GSC currents and FRT function
thresholds can be modified from the device mask.

A

(49)

1.1

] dead-band

0.9

10.5

>

-1.0

Figure 27 Wind turbine reactive output current during voltage disturbances [13].
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SQRT (u[1]*u[1]-u[2]*u[2]
FRTX> Page [FRT
——'2 >1d_limit
Limiter1
FRT| Page MAX I/_
\dJefJn@ _4 - @Idirefiout
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Figure 28 EMTP® diagram of “ldq reference limiter” block

EMTP-EMTPWorks 2021-02-18 Page 28 of 61



ABS(u[1]) > #FRT_ON#

—RL__ B> Ert

ABS(u[1]) < #FRT_OFF#

> fw P .

S-R flip-flop
ideal

u[1] > #FRT_time#

v rc
W —dq O\

Figure 29 EMTP® diagram of “FRT decision logic” block

3.2.3.2.2 FSC Grid Side Converter Decoupled Sequence Control

Ideally, the GSC control presented in the previous section is not expected to inject any negative
sequence currents to the grid during unbalanced loading conditions or faults. However, the terminal
voltage of FSC WT contains negative sequence components during unbalanced loading conditions or
faults. This causes second harmonic power oscillations in GSC power output. The instantaneous active
and reactive powers such unbalanced grid conditions can be also written as [14]

p =Py +Pg, cos(2wt) + Pg, cos(2mt)

(46)
q=Q, +Qc, cos(2mt) + Qg, cos(2nt)

where P, and Q, are the average values of the instantaneous active and reactive powers respectively,
whereas P.,, Ps,, Qg, and Qg, represent the magnitude of the second harmonic oscillating terms in
these instantaneous powers.

With decoupled sequence control usage, four of the six power magnitudes in (46) can be controlled
for a given grid voltage conditions. As the oscillating terms in active power P, , Ps, cause oscillations
in dc bus voltage V., the GSC current references (igg' , igg' , igg’ , iag' ) are calculated to cancel out these
terms (i.e. Py, =P5, =0).

The outer control and Idq limiter shown in Figure 8 calculates igg, i:qg’ I'c',’g and I'c']'g These values

are used to calculate the GSC current references i3y, iyy . iyy and igg for the decoupled sequence

+ ! |
qg > 'dg
current controller. As the positive sequence reactive current injection during faults is defined by the grid
code (see Figure 27), the GSC current reference calculation in [14] is modified as below:

_.+ '] -1
! + + - -
lag | Vag. Vdg Vag Vdg Py (47)
— - - - + +
g Vg Vag Vag Vag | |Pe2
- - + ot P.
g Vag Vag Vdg Vag s2
L 49 |
where P, is approximated by
+
Po = Vit lg (48)
The calculated reference values in (47) is revised considering the converter limits I'(','g and Igrg . For

example when (igg' + i;g’) > I'(;’;‘ , the g-axis reference current references are revised as below
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g =lag [Ilgg / (igg/ +isg )} (49)
— [lgrg / (i;g’ +ig )}

are the revised reference values for g-axis positive and negative currents,

+ n —
where qu and qu

respectively.

+ n

The revised d-axis positive and negative current references Iy " and Iy,

can be obtained with

the same approach using I'c',’g It should be emphasized here that, during faults the priority is providing

|gg specified by the grid code. The remaining reserve in GSC is used for eliminating P,, and Pg, .

Hence, its performance reduces with the decrease in electrical distance between the WP and the
unbalanced fault location.

As igg, igg, igg @nd iyq are controlled, the decoupled sequence control contains four PI regulator
and requires sequence extraction for GSC currents and voltages. The sequence decoupling method
[15] shown in Figure 30 is used in EMTP implementation. In this method, a combination of a low-pass
filter (LPF) and double line frequency Park transform (P‘2 and P+2) is used to produce the oscillating
signal, which is then subtracted. The blocks C and P represent the Clarke and Park transformation
matrices, and the superscripts +1 and 12 correspond to direct and inverse transformation at line

frequency and double line frequency, respectively.
In EMTP implementation, the feed-forward compensating terms (O)Lchokeiqg + vd,choke) and
(—u)Lchokeidg + vq_choke) are kept in coupled form and added to the Pl regulator outputs in stationary af3-

frame.

+1

\i

> [PF

Labe i af
—

Y

» LPF

P—l

Figure 30 Sequence extraction using decoupling method.

3.2.4 FSC Protection System Block

Figure 31 shows the “protection system” block. It includes overvoltage and undervoltage protection
relays, a dc overvoltage protection (chopper protection) and an overcurrent detector for each converter
to protect IGBT devices when the system is subjected to overcurrent. For initialization, all protection
systems, except for DC chopper protection, are activated after 100ms of simulation (i.e. init_Prot_delay
= 0.1s). The protection system parameters can be modified from the device mask as shown in Figure
32.
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Figure 31
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Figure 32 Protection system parameters

3.2.4.1 Overvoltage and Undervoltage protections

Figure 33 shows overvoltage and undervoltage protections. It includes rms-based over/under
voltage relays, cumulative instantaneous overvoltage relays, deep voltage sag detectors.
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Figure 33 EMTP® diagram of overvoltage and undervoltage protections

The instantaneous over voltage protection suggested by IEEE Std 1547-2018 is developed and
added to the protection schemes. This protection works based on a cumulative instantaneous
overvoltage. Figure 34 shows the threshold values of the voltage (per unit of nominal instantaneous
peak base) and cumulative duration of the transient overvoltage protection, and they can be modified
in the device mask. The cumulative duration is the sum of durations when the instantaneous voltage
exceeds the protection threshold over a one-minute time window.
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Cumulative duration (s)
Figure 34 Transient overvoltage limits
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The rms-based over/under voltage protections are designed based on the technical requirements
set by Hydro Quebec for the integration of renewable generation. The over/under voltage limits as a
function of time are presented in Figure 35 and can be modified in the device mask. The voltages below
the red line reference and above the black line reference correspond to the ride-through region where
the park is supposed to remain connected to the grid. This block measures the rms voltages on each
phase and sends a trip signal to the inverter circuit breaker when any of the phase rms voltage violates
the limits in Figure 35.

Canada
Hydro Quebec - LV & HV RT

1,5

1,4 l—
1,3
1,2 4

1,1 4 l—\_

1,0 A

Ride Through Region

0,9 1 ]
0,8
0,7

0,5 1

Voltage (pu)

0,4 1
0,3
0,2 1
0,1 1

0,0 T T T T
0,0 0,1 1,0 Time(s) 10,0 100,0 1000,0

Figure 35 LVRT and HVRT requirements [16]

The “Deep Voltage Sag Detector” block temporary blocks the GSC and MSC in order to prevent
potential overcurrents and restrict the FRT operation to the faults that occur outside the wind farm.
3.2.4.2 dc Overvoltage Protection Block

The function of dc chopper is to limit the dc bus voltage. It is activated when the dc bus voltage
exceeds |Uchoppe,,ON| and deactivated when dc bus reduces below Ugnooper—orr |- The EMTP diagram

of the “dc overvoltage protection” is shown in Figure 36.

activate_Protect1

#activate_ChopperProt#+1

Vdc_meas
(UT>uBN+((u[1]>=u[2])*(u[1]<=u[3]))"u[4] il
VdC|Z> D; 00—t select —|Z > chopper_active
Chopper_Low_limit |[C D 2 pper_
> Chopper_activation_selector

Chopper_High_Limit :}:

Chopper_in_Delay

Figure 36 EMTP® diagram of dc overvoltage protection block
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3.2.4.3 Overcurrent Protection Block

The overcurrent protection shown in Figure 37 blocks the
converter current exceeds the pre-specified limit.

Imsc
Imsc_MAX
1
2 MAX
3

Imax_MSC

Overcurrent_limit

initialization_Delay

converter temporarily when the

release _delay1

|_MacSideConv_max_pu

lgsc
Igsc_MAX
1
! 2 MAX p—
3

Imax_GSC

—D

Ovwercurrent_limit

(u[1]>0)*( t > #init_Prot_delay #)

initialization_Delay

release_delay o—[X>oc msc

release _delay3

(u[1]>uf2])

|_GridSideConv_max_pu

(u[1]>0)*( t > #init_Prot_delay #)

Figure 37 EMTP® diagram of overcurrent protection block

3.3 DFIG based Wind Park Model in EMTP®

The EMTP diagram of the DFIG based Wind Park is shown in Figure 38. It is composed of “Wind
Turbine”, “WT Electrical System”, “WT Control System”, “WP Control System” blocks, PI circuit that
represents equivalent collector grid, wind park transformer and initialization source with load flow

constraint.

release_delay o

—@ OC_gsc

This model is the same as with the FSC based wind park model except “WT Electrical System”

and “WT Control System” blocks.
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Figure 38 EMTP® diagram of the DFIG based Wind Park

3.3.1 DFIG Wind Turbine Electrical System Block

The EMTP diagram of the “WT Electrical System” block consists of IG, ac-dc-ac converter system,
GSC choke filter, shunt ac harmonic filters, crowbar and WT transformer as shown in Figure 39.

pu_to_actual

wr_pu > 1 fw P > wr_rad sign_change

u[1] * #wb_gen_mech#
WT Transformer

z
O\
/ . :
2
DFIG_transformer SN = T —

Vgrid
Igrid

GRID

S
o
<

W Do) stator

SW2
E DIAY _ y ) [~ s ASM r
2 1 l Vlabc_grid labc_stator labc_rotor
~ z  choke filter N
Q
r I < crowbar
: I
I - RLchoke
= | > M X X—
‘ ﬂlﬁr — labc_converter, GSC RSC L
shunt ac =
harmonic filters connection to CROW_act| ] crovbar

ac-dc-ac converter system Crowbar

Figure 39 EMTP® diagram of DFIG “WT Electrical System” block

The measurement blocks are used for monitoring and control purposes. The monitored variables
are |G stator, IG rotor, GSC and total DFIG currents, and DFIG terminal voltages. The dc voltage is also
monitored (in ac-dc-ac converter system block) as well as the IG electromagnetic torque. All variables
are monitored as instantaneous values and meter locations and directions are shown in Figure 39. The
ac-dc-ac converter system block details have been presented in Section 3.1.

Similar to the FSC WT, the “shunt ac harmonic filters” block includes two band-pass filters as
shown in Figure 21. These filters are tuned at switching frequencies harmonics n1 and nz of the GSC.
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3.3.2 DFIG Wind Turbine Control System Block

The EMTP diagram of the DFIG WT control system block is shown in Figure 40. The sampled
signals are converted to pu and filtered. The sampling frequency are set to to 22.5 kHz and 11.25 kHz
(from device mask as shown in Figure 12) for GSC and RSC, respectively. The “sampling” blocks are
deactivated in AVM due to large simulation time step usage. In the generic model, 4t order Bessel type
low pass filters are used. The cut-off frequencies of the filters are set to 4.5 kHz and 2.25 kHz for GSC
and RSC, respectively. However, the order (up to 8™ order), the type (Bessel and Butterworth) and the
cut-off frequencies of the low pass filters can be modified from device mask as shown in Figure 12. The
“RSC Compute Variables” and “GSC Compute Variables” blocks do the dq transformation required for
the vector control. The RSC control (“Rotor Control” block) operates in the stator flux reference frame
and the GSC (“Grid Control” block) operates in the stator voltage reference frame. The pitch control is
activated when the wind speed increases above the rated value and given in Figure 4. The protection
block includes the over/under voltage relay, the deep voltage sag detector, the dc chopper control, the
crowbar protection and overcurrent detector.

Rotor_Control
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RSC ) avrefPXO——{dVref
Compute Variables ,, Viv
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P P
RSC conv to pu
RSC_sampler RS LPF W rotor meas w_rotor /_rotor Vref_PWM ] \/ref RSC
RSC LPF (RSC de_mez dg_ q_stator
RSC (RSC) Vdc—'“ffs 1dq._rotor q_rotor
s | Convert to pu —fofo‘r" w_stator| /_stator
ampler T ol d Vdc
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1 _— e —
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GSC G.nd Control1
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i GSC | | Convert to pu i ; i >_grid w_s! ador vaz ator Vref_PWM gl \Vrof GSC
s I I Vabc_grid
conv_A Xi—" ampler ’_’. Sl -> pu ; converter Vdq_gr dq_grid
1dq_ q_converter
Idq_pos. JSC‘ T ‘\dquos _gscC
1dq_neg_gsc i 1dq_neg_gsc
1dq_neg_grid ‘ 1dq_neg_grid
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Pitch_Control
Pitch Control
Protection
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N — Pitch_deg——X> Pitch_d
Protection System e

—p
switch_on———X> sw_on
crowbar_activel———X Crowbar_ON
chopper_activel————X> Chopper ON
:_fotor RSC_block|———> Block RSC
>_converter GSC_block|——<> Block_GsC

Figure 40 EMTP® diagram of DFIG “WT Control System” block

——Vdc_meas

Vabe_grid

The direct axis d is aligned with the stator voltage in transformation matrix (see (19)); therefore,
the rotor and stator currents are shifted to align with the stator flux. The shifted-angle flux block used to
achieve a Stator Flux Orientation (SFO) is shown in Figure 41.

The frequency of the rotor voltage is controlled so that under steady conditions, the combined
speed of the rotor plus the rotational speed of the rotor flux vector matches that of the synchronously
rotating stator flux vector fixed by the network frequency. Manipulation of the rotor voltage permits
control of the generator operating conditions.
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Figure 41 EMTP® diagram of Flux angle calculation

3.3.2.1 DFIG Rotor Side Converter Control

The EMTP diagram of the “Rotor Control” block is shown in Figure 42. The d- and g-axis currents
of RSC (iy, and iy, in Figure 10) are used to control the positive sequence voltage at MV side of DFIG

transformer (V,, ) and the active power output of DFIG. The positive sequence voltage at MV side of

DFIG WT transformer is not directly measured by the WT controller and it is approximated using (31) -
(33).
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Figure 42 EMTP® diagram of DFIG “Rotor Control” block
The d-axis reference current is calculated by the proportional outer voltage control
i:ir = KV (V’ - VvJ\r/t ) + idr—m (50)

In (50)
approximated by

igr_m 1S the compensating term for the reactive current absorbed by the IG and

idrfm = ~\:—/t/(('osl-m) (51)
where L, is the IG magnetizing inductance and \N/\;jt is the positive sequence voltage at DFIG WT

terminals.

The g-axis reference current is calculated by the power controller

ir = (Kpp +Kip /) (P'=P) (52)

During normal operation, the controller gives the priority to the active currents.
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q
. L \2 2
o lim lim H
lgr < Idr = (Ir ) _<|qr)
lim |Iim

where Iy, |, and I'™ are the limits for d-axis, g-axis and total RSC currents, respectively.

; lim
igr <lgr

(53)

When the FRT function is activate, the RSC controller gives the priority to the reactive current by
reversing the d- and g-axis current limits given in (53).

The RSC inner control loop is designed based on the IMC method [12][17] considering the I
representation of the IG [17] shown in Figure 43. The I representation eliminates the complexity of the
well-known T representation without loss of information or accuracy. It is obtained by adjusting the
rotor/stator turn ratio for eliminating the stator leakage inductance. The I representation parameters are
as follows:

Y=L/l (54)
L, =L =1L, (99)
Ly =1L + 72, (56)
Rr = Yer (57)

where L, is the magnetizing inductance, L, and L, are the stator and rotor leakage inductances, and
R, and R, are the stator and rotor resistances of the machine.

i R, L, Ry VR o
4 —
+— A B e O s
Vi L % vk

Figure 43 T representation of induction machine

After transformation, the rotor currents, fluxes and voltages become

iR =i /v (58)
VR =Y \L (60)
By neglecting dA, /dt[18], the rotor side voltages can be written as:
. d idR .
Var =Rr igr +Lo — o L igr (61)
dt
. d iqR . .
Vqr =Rr igr +Ls —at [(Lm +Ls) igr +Lwigs ] (62)

The iz and iz errors are processed by the PI controller to give vyz andvgg , respectively. To
ensure good tracking, feed-forward compensating terms for -« L i in (61) and

o, [(Ly +L,) igr +Lyigs ] in (62) are added. The converter reference voltages become
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Var = (kp + ki/s) (isr —iar ) —or L Igr (63)

VR = (kID + ki/s) (itr —igr ) = @ [(Lm +Lo) igr +Ligs ] (64)
Using (25) with
Gro(8)=/(Re L) (65)
the PI controller parameters of the inner current control loop are found as
Ko = al, (66)
ki = a.Rr (67)

The PI controller parameters are calculated for the RSC rise time given in the device mask as
shown in Figure 12.

The RSC inner current control has variable conversion blocks for the input RSC currents and the
output RSC voltages as shown in Figure 44.

ldqr ldqR

Figure 44 Conversion at RSC input and output variables

3.3.2.2 GSC Grid Side Converter Control
The function of GSC is maintaining the dc bus voltage Vg, at its nominal value. It operates at

unity power factor except severe fault conditions. The EMTP diagram of the “Grid Control” block is
shown in Figure 45. GSC control offers both coupled and decoupled sequence control options. User
can select the GSC control option from the device mask as shown in Figure 12.
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Figure 45 EMTP® diagram of DFIG “Grid Control” block

3.3.2.2.1 DFIG GSC Coupled Control
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Except the g-axis reference current calculation, the DFIG WT GSC control is similar to the FSC WT

GSC control. In DFIG WTs, the GSC operates at unity power factor, hence the g-axis reference current
is set to zero (i.e. iag =0). However, GSC starts injecting reactive currents during faults when the RSC

reactive current contribution is not sufficient to satisfy the grid code requirement due to the reactive
current absorbed by the IG. In that condition GSC g-axis reference current becomes

ié}r =Ky (V’ - Vvtt)_(llciJT - idr—m) (68)

Similar to RSC, the priority is given to the GSC reactive currents when FRT function is activate. In
order to improve the high voltage ride through (HVRT) capability of the DFIG WT, reactive current
contribution of GSC is also used. The GSC reactive current contribution is achieved by “LVRT boost”
and “HVRT boost” blocks (shown in Figure 46 and Figure 47, respectively) during low voltage and high
voltage conditions.

The PI controller parameters are calculated for the GSC rise time given in the device mask as shown
in Figure 12. The parameters regarding GSC reactive current contribution can be modified from the
device mask as shown in Figure 12.
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Figure 46 EMTP® diagram of “LVRT boost” block
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Figure 47 EMTP® diagram of “HVRT boost” block

3.3.2.2.2 DFIG Side Converter Decoupled Sequence Control

Unbalanced steady state operation and fault conditions give rise to high frequency components in
rotor currents and torque pulsations [19]. To mitigate the corresponding stress different control methods
has been proposed [20] - [24]. The primary objective in these methods is to reduce the oscillating air
gap torque during periods of asymmetry so that the drive-train of the wind turbine is not subjected to
the resulting stress. Either RSC or GSC (or both of them) can be used for this purpose. The performance
of these methods depends on the severity of the voltage dip at DFIG terminal as well as the severity of
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its asymmetry. The major limiting factor of the performances of these methods is the FRT requirement
specified by the grid code.

The implementation in this document considers the method in which the GSC compensates the
negative sequence current required in the network during any unbalanced operation [23]. As the GSC
will supply the negative sequence components for the currents to the grid, the stator currents will remain
balanced as shown in Figure 48.

[ . .,
The reference GSC currents (igy , iqg »igg +iqg

") will become
! ] ! P P . P .
ldg =ldg + lag Tlag » ldg Tlawt» log = lqwt (69)

The calculated reference values in (69) is revised considering the converter limit Igm . For example

2
when \/(igg' +i;g’) +(i$g' +i;g') >Ig", the g-axis positive sequence current reference is revised as

i =t o | )

below

Is 1 +1‘;t
IG - —_— i
f1g+l
a RSC GSC
dc 71 dc
L

Figure 48 Negative sequence compensation through GSC
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4 WIND PARK RESPONSE TO UNBALANCED FAULTS

This section provides a comparison between the wind park responses with coupled and decoupled
sequence controls. Although the comparison is conducted for various type unbalanced faults in the 120
kV, 60 Hz test system shown in Figure 49 [25]-[27], only the 250 ms double line to ground (DLG) fault
simulation scenarios are presented. The simulation scenarios are presented in Table I. The WT
converters are represented with their AVMs. The simulation time step is 10 pus.

In the test system, the loads are represented by equivalent impedances connected from bus to
ground on each phase. The transmission lines are represented by constant parameter models and
transformers with saturation. The equivalent parameters for the 34.5 kV equivalent feeders are
calculated on the basis of active and reactive power losses in the feeder for the rated current flow from

each of the WTs [28]. The aggregated model of 1.5 MW, 60 Hz DFIG wind turbines is used for 45 units.
In all simulations, the WT is operating at full load with unity power factor (i.e. Qpg, = 0).

BUS1 BUS2
45x 1.5 MW 100 km

3 + CP Equivalent
Jl System

Figure 49 120 kV, 60 Hz test system

Table | Simulation Scenarios

Scenario Fault Location GSC Control Scheme
M1 BUS4 Coupled Control
M2 BUS4 Decoupled Sequence Control
N1 BUS6 Coupled Control
N2 BUS6 Decoupled Sequence Control

EMTP-EMTPWorks 2021-02-18 Page 43 of 61



4.1 FSC based Wind Park Response to Unbalanced Faults
4.1.1 Simulation Scenarios M1 and M2 with FSC based Wind Park

As shown in Figure 50, the simulated unbalanced fault results second harmonic pulsations in the
active power output of FSC WT in scenario M1. These second harmonic pulsations are eliminated in
the scenario M2 with decoupled sequence control scheme in GSC at the expense of a reduction in the
active power output of FSC WT as shown in Figure 51. On the other hand, the reactive power output of
FSC WT is similar in scenarios M1 and M2. This is due to the strict FRT requirement on positive
sequence reactive currents.

The performance of the GSC decoupled sequence control is limited to the GSC rating as well as
the FRT requirement specified by the grid code. The complete elimination of second harmonic
pulsations cannot be achieved when the required GSC current output exceeds its rating. It should be
noted that, when the electrical distance between the WP and unbalanced fault decreases, larger GSC
currents are required to achieve both FRT requirement and the elimination of second harmonic
pulsations.

The negative and positive sequence fault currents (I, and |, ) of the WP in scenarios M1 and M2

are also quite different as illustrated in Figure 52. This difference strongly depends on the unbalanced
fault type, its electrical distance to the WP, GSC rating and the FRT requirement specified by the grid
code. It becomes less noticeable especially for the electrical distant faults such as an unbalanced fault
at BUS6 as presented in Section 4.1.2.

01} - : ]
= oo R
o 0
o —M1, Pcz
°6N '0.1 I _"M1! P82
Q
o R N N R M2, Pcz
. | | | | = M2, F’82
0 0.2 0.4 t (S) 0.6 0.8 1
Figure 50 Pc; and Ps; of aggregated FSC WT in scenarios M1 and M2
I T T T T 1
1r & J
é v i —M1, F’0
o R Pt . M1 ) QD
g 0.5 i
o ;.... R b M2, Po
D.O jrg l‘ ........... M2, QD
O r..-........w...,ilj ‘\“—" A £ — g I B I L
L 1 ‘I L 1 J
0 0.2 04 t(s) 06 0.8 1

Figure 51 Py and P, of aggregated FSC WT in scenarios M1 and M2
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Figure 52 |, and I, of FSC WT based WP in scenarios M1 and M2

4.1.2 Simulation Scenarios N1 and N2 with FSC based Wind Park

As the electrical distance between the WP and the unbalanced fault is much larger in scenario N1
compared to scenario M1, both the voltage sag and the second harmonic pulsations in the active power
output are much smaller in scenario N1 compared to the scenario M1 (see Figure 53 and Figure 50).
As a result, the decupled sequence control of GSC achieves elimination of these pulsations in scenario
N2 without any reduction in the active power output of FSC WT (see Figure 54 and Figure 51). As seen
from Figure 55 and Figure 52, the WP fault current contribution difference between the scenarios N1
and N2 also becomes less noticeable especially for positive sequence fault currents compared to the
difference between scenarios M1 and M2.

004 r ; ‘;.f"l,'fh.l'"?":l‘-l.’l’fslln‘!‘l'r' b ‘Jl‘l —_ -N1 , P
]

0 0.2 0.4 t(s) 0.6 0.8 1

Figure 53 Pc2 and Ps; of aggregated FSC WT in scenarios N1 and N2
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Figure 55 |, and I, of FSC WT based WP in scenarios N1 and N2
4.2 DFIG based Wind Park Response to Unbalanced Faults
4.2.1 Simulation Scenarios M1 and M2 with DFIG based Wind Park

As shown in Figure 56, the decoupled sequence control reduces the second harmonic pulsations
in IG electromechanical torque. It should be noted that, the performance of decoupled sequence control
is limited with the size of the GSC and the FRT requirement specified by the grid code as well as the
unbalanced fault type, its electrical distance to the WP. With a larger size GSC, these pulsations can
be totally eliminated as shown in Figure 57.

As shown in Figure 58, the active and reactive power outputs of the DFIG WT are similar for both
coupled and decoupled sequence control schemes in GSC. However, the decoupled sequence control
scheme in GSC results much higher negative sequence fault current contribution of the WP as shown
in Figure 59.
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Figure 56 IG electromagnetic torque in scenarios M1 and M2
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Figure 57 |G electromagnetic torque in scenarios M1 and M2 (with larger size GSC)
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Figure 58 P and Q of aggregated DFIG WT in scenarios M1 and M2
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Figure 59 I, and I, of DFIG WT based WP in scenarios M1 and M2

4.2.2 Simulation Scenarios N1 and N2 with DFIG based Wind Park

As shown in Figure 60, decoupled sequence control totally eliminates the second harmonic
pulsations in IG electromechanical torque. This is due to less severe voltage sag at POI due to large
electrical distance between WP and the fault.

Similar to the BUS4 fault scenario, the active and reactive power output of DFIG WT is similar for
both control schemes in GSC as shown in Figure 61.

Alike BUS4 fault scenario, the decoupled sequence control scheme in GSC results much higher
negative sequence fault current contribution of the WP as shown in Figure 62.

T 1 I I T

1

0 0.2 0.4 t(s) 06 0.8 1

Figure 60 IG electromagnetic torque in scenarios N1 and N2
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5 AVERAGE VALUE MODEL PRECISION AND EFFICIENY
5.1 120 kV Test System Simulations

This section provides a comparison between average value model (AVM) and detailed model (DM)
of the presented wind park models. The simulation scenario M2 in Table | is repeated for 50 s
simulation time step (M3) and for DM with 10 ys simulation time step (M4).

5.1.1 Simulation Scenarios M2 - M4 with FSC based Wind Park

As shown in Figure 63 - Figure 65, AVM usage instead of DM provides very accurate results even
for 50 s time step usage.

_. 0.1
2
£ 0.05
o
w)
a0
o
&-0.05
o
-0.1
_0-15 1 | | |
0 0.2 04 t(s) 06 0.8 1

Figure 63 Pc2 and Ps; of aggregated FSC WT in scenarios M2 - M4

0 0.2 0.4 t(s) 06 0.8 1
Figure 64 P, and Qo of aggregated FSC WT in scenarios M2 - M4
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Figure 65 I, and I, of FSC WT based WP in scenarios M2 - M4

5.1.2 Simulation Scenarios M2 - M4 with DFIG based Wind Park

As shown in Figure 66 - Figure 68, AVM usage instead of DM provides acceptable accuracy even
for 50 us time step usage. From Figure 63 - Figure 68, it can be said that AVM provides more accurate
results when it is used to represent FSC WT converters.

0_ .

0 0.2 04 t(s) 06 0.8 1

Figure 66 |G electromagnetic torque in scenarios in scenarios M2 - M4

0 0.2 0.4 t(s) 06 0.8 1
Figure 67 Py and Qo of aggregated DFIG WT in scenarios M2 - M4
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Figure 68

5.2 IEEE 39 Bus System Simulations

A multi wind park system is developed from the IEEE-39 bus system by replacing two of the thermal
power plants (TPPs), as shown in Figure 69. Both WPs have 400 MW (266 x 1.5 MW) installed capacity.
However, the WP at bus B2 is FSC type and the WP at bus B25 is DFIG type. In the presented
simulation the WPs are operating at full load (i.e. under nominal wind speed) with unity power factor
(i.e. Qpp =0). The transmission lines are modeled with constant parameter models, and the saturation

of transformers are taken into account.

In the simulated scenario, the disturbance is a DLG fault on transmission line that connects busses
B3 and B4 (as bus B3 end). The fault is cleared with the operation of line circuit breakers indicated with
CB1 and CB2 in Figure 69. The fault is applied at t = 1s. The fault clearing time is 200 ms (for testing
purposes). The system is simulated for 3 s. The simulations are performed for the models and simulation
time steps presented in Table Il

The presented waveforms in Figure 70 - Figure 75 demonstrate that AVM usage instead of DM
provides acceptable accuracy even for 50 ps time step usage while providing a significant computational
gain as illustrated in Table Ill. The computational gain over DM is more than 9 when the AVM is used
with 50 us time step.

Table Il IEEE 39 Bus System Simulations

Scenario WT Converter Model Simulation Time Step
S$1 DM 10 ps
S2 AVM 10 ps
S3 AVM 50 ps

Table Ill IEEE 39 Bus System Simulations CPU Timings

Scenario CPU time
S1 1368 s
S2 615s
S3 145s
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Figure 73 IG electromagnetic torque in IEEE 39 bus system simulation
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Figure 74 Py and Qo of aggregated DFIG WT in IEEE 39 bus system simulation
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Figure 75 I, and I, of DFIG WT based WP in IEEE 39 bus system simulation

EMTP-EMTPWorks 2021-02-18 Page 55 of 61



6 DETAILED WIND PARK MODELS AND AGGREGATED MODEL
PRECISION

Certain grid integration studies, such as analysing collector grid faults and collector grid
overcurrent protection system performance, LVRT and HVRT capability studies [1], ferroresonance
study [29], require EMT type simulations with detailed wind park model. These studies do not only
require detailed MW collector grid model, but also detailed model of HV/MV wind park substation
including overvoltage protection, overcurrent and differential current protections, measuring current and
voltage transformers as shown in Figure 76 - Figure 78.
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Figure 76 EMTP diagram of the 45 x 1.5 MW wind park detailed model given in Figure 46.

Can be improved to include measuring transformers
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Figure 77 EMTP diagram of the HV/MV Wind Park Substation
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Figure 78 EMTP diagram of MV Feeder-1

The WT model in Figure 78 is obtained from the WP model presented in Chapter 3 by excluding
the WPC, WP transformer and collector grid equivalent. The associated device mask is shown in Figure
79. It does not include the tabs used for MV/HV WP transformer and WPC parameters. On the other
hand, the first tab of the aggregated wind turbine mask includes certain wind park parameters (total
number of WTs in the WP, POI and collector grid voltage levels, collector grid equivalent and the MV/HV
WP transformer impedances) in addition to the general wind turbine parameters (WT rated power,
voltage and frequency) and wind speed. It should be noted that, the MV/HV WP transformer and the
collector grid equivalent impedances are used GSC parameter calculation (see section 3.2.3.2).

Scenario M2 in Table | (DLG fault at BUS4 for GSC decoupled sequence control scheme) is
simulated using the detailed wind park model to conclude on accuracy of the aggregated model. As
shown in Figure 80 - Figure 83, the aggregated models of wind parks provide accurate results.
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Figure 79 Aggregated FSC based wind turbine device mask
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Figure 80 Active and reactive power at POI, Wind Park with FSC WTs
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Figure 83 Positive and negative sequence currents at POIl, Wind Park with DFIG WTs
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