Exciters and Governors: Exciter AC9C **Exciter AC9C** | Exciters and Governors: Exciter AC9C | | |--------------------------------------|--| | 1 Description | | | 1.1 Pins | | | 1.2 Parameters | | | 1.2.1 Data tab | | | 1.2.2 Exciter tab | | | 2 Initial conditions | | | 3 References | | Tshibain Tshibungu, Jean Mahseredjian, 6/7/2018 7:17 AM ## 1 Description This device is an implementation of the IEEE type AC9C excitation system model. This device is implemented as described in [1]. Implementation details can be viewed by inspecting the subcircuit of this device. #### **1.1 Pins** This device has 14 pins: | Pin name | Туре | Description | Units | |----------|---------------|--|-------| | VREF | Input | Reference voltage of the stator terminal voltage | pu | | Efss | Input | Steady-state field voltage at $t = 0$, for initialization | pu | | VC | Input | Terminal voltage of synchronous machine, | pu | | | | transducer output | | | VS | Input | Power System Stabilizer signal | pu | | IFD | Input | Field current signal | pu | | VT | Input, bundle | Terminal voltage (phasor) of synchronous | pu | | | | machine (magnitude and phase) | | | IT | Input, bundle | Current (phasor) of synchronous machine | pu | | | | (magnitude and phase) | | | VB | Input | Available exciter voltage | pu | | VUEL | Input | Under Excitation Limiter signal | pu | | VOEL | Input | Over Excitation Limiter signal | pu | | VSCL | Input | Stator Current Limiter signal | pu | | EFD | Output | Field voltage signal | pu | | VF | Output | Excitation system stabilizer signal | pu | |-----|--------|--|----| | VFE | Output | Signal proportional to exciter field current | pu | #### 1.2 Parameters The default set of parameters can be found in [1]. #### 1.2.1 Data tab The parameters on the Data tab are: - 1. Gain K_{PR}: voltage regulator proportional gain - 2. Gain K_{IR}: voltage regulator integral gain - 3. Gain K_{DR}: voltage regulator derivative gain - 4. Time constant TDR: lag time constant for derivative channel of PID controller - 5. Maximum regulator output V_{PIDmax}: maximum voltage regulator output - 6. Minimum regulator output V_{PIDmin}: minimum voltage regulator output - 7. **Gain K**_{PA}: field current regulator proportional gain - 8. Gain K_{IA}: field current regulator integral gain - 9. Maximum output V_{Amax}: maximum current regulator output - 10. Minimum output V_{Amin}: minimum current regulator output - 11. Gain KA: controlled rectifier bridge equivalent gain - 12. **Time constant T**_A: controlled rectifier bridge equivalent time constant - 13. Maximum bridge output V_{Rmax}: maximum rectifier bridge output - 14. Minimum bridge output V_{Rmin}: minimum rectifier bridge output - 15. Gain K_F: exciter field current feedback gain - 16. Time constant T_F: field current feedback time constant - 17. Gain K_{FW}: free wheel equivalent feedback gain - 18. Maximum feedback V_{FWmax}: maximum free wheel feedback - 19. Minimum feedback V_{FWmin}: minimum free wheel feedback - Rectifier loading factor K_{C1}: rectifier loading factor proportional to commutating reactance - 21. Rectifier loading factor Kc2: rectifier loading factor proportional to commutating reactance - 22. Gain K_P: potential circuit (voltage) gain coefficient - 23. Phase angle Theta_P: potential circuit phase angle (degrees) - 24. Gain K_{I1}: compound circuit (current) gain coefficient - 25. Gain K₁₂: compound circuit (current) gain coefficient - 26. **Reactance X**_L: reactance associated with potential source - 27. Voltage V_{B1max}: maximum available exciter voltage - 28. Voltage V_{B2max}: maximum available exciter voltage - 29. Excitation Type option: see explanations below. - 30. Power Stage Type option: see explanations below. - 31. Under Excitation Limiter option: see explanations below. - 32. Over Excitation Limiter option: see explanations below. - 33. Stator Current Limiter option: see explanations below. There are two possible selections for the Excitation Type option: - 1. Excitation system is self-excited: VT and IT inputs must be connected. - 2. Excitation system comes from a separate source: VB input must be connected There are two possible selections for the Power Stage Type option: - 1. Power Stage is chopper converter. - 2. Power Stage is thyristor converter. There are two possible selections for the Under Excitation Limiter option: - VUEL not available or added to the reference voltage: this option can be selected when the VUEL input signal is zero (not connected) or when it is connected and added to the reference voltage. - 2. VUEL connected to the high value gate (HV gate) There are two possible selections for the Over Excitation Limiter option: - VOEL not available or added to the reference voltage: this option can be selected when the VOEL input signal is zero (not connected) or when it is connected and added to the reference voltage. - VOEL connected to the low value gate (LV gate). There are three possible selections for the Stator Current Limiter option: - VSCL not available or added to the reference voltage: this option can be selected when the VSCL input signal is zero (not connected) or when it is connected and added to the reference voltage. - 2. VSCL connected to the high value gate (HV gate). - 3. VSCL connected to the low value gate (LV gate). #### 1.2.2 Exciter tab The parameters on the Data tab are: - Rectifier loading factor K_c: diode bridge loading factor proportional to commutating reactance - 2. Demagnetizing factor K_D: demagnetizing factor, function of exciter alternator reactances - 3. Constant K_E: exciter field proportional constant - 4. Time constant T_E: exciter field time constant - 5. Minimum output limit V_{Emin}: minimum exciter output limit - 6. Maximum field current V_{FEmax}: maximum field current limit - 7. Voltage V_{E1}: the exciter voltage point which is near the exciter ceiling voltage - 8. Voltage V_{E2} : the exciter voltage point which is near 75% of V_{E1} - Saturation function output SE_V_{E1}: the exciter saturation function value at V_{E1} - 10. Saturation function output SE_V_{E2}: the exciter saturation function value at V_{E2} The exciter saturation function is defined as $$S_{E} = A_{EX} e^{B_{EX}E_{FD}}$$ (1) which gives the approximation saturation for any E_{FD} (exciter output voltage). According to [2] (see pages 562 and 563), the coefficients A_{EX} and B_{EX} can be found from: $$A_{EX} = \frac{S_{V_{E2}}^4}{S_{V_{E1}}^3} \tag{2}$$ $$B_{EX} = \frac{4}{V_{E1}} ln \left(\frac{S_{V_{E1}}}{S_{V_{E2}}} \right)$$ (3) In the literature [2] $V_{E1} = V_{E_{max}}$ and $V_{E2} = V_{E_{0.75max}}$. #### 2 Initial conditions The reference voltage VREF can be manually or automatically set by connecting or not connecting the input signal VREF, respectively. When VREF is not connected (the signal is zero), the reference voltage is internally found from the steady-state solution. When VREF is connected, its initial value must match the per unit steady-state voltage of the stator terminal voltage, since otherwise the generator voltage will not start at the actual steady-state. ### 3 References - [1] "IEEE Recommended Practice for Excitation System Models for Power System Models for Power System Stability Studies," IEEE Standard 421.5-2016. - [2] P. M. Anderson and A. A. Fouad, "Power system control and stability", second edition, IEEE Press, Wiley Interscience, 2003.