Exciters and Governors: Governor-Turbine IEEEG1

Tshibain Tshibungu, Jean Mahseredjian, 8/1/2016 2:30 PM

1 Description

This device is an implementation of a general model for steam turbine and governor IEEEG1. This device is implemented as described in [1]. Implementation details can be viewed by inspecting the subcircuit of this device.

1.1 Pins

This device has 6 pins:

Pin name	Туре	Description	Units
Pm_ic	Input	Steady-state mechanical power at t = 0, for	pu
		initialization	
W	Input	Mechanical speed	pu
g_pos	Output	Gate position	pu
Pm	Output	Turbine mechanical power	pu
PmHP	Output	High pressure mechanical power	pu
PmLP	Output	Low pressure mechanical power	pu

1.2 Parameters

The default set of parameters are obtained from [2].

1.2.1 Governor tab

The parameters on the Data tab are:

- 1. Governor gain K: Governor gain
- 2. Lag time constant T₁: governor lag time constant

- 3. Lead time constant T₂: governor lead time constant
- 4. **Time constant T₃**: valve positioner time constant
- 5. Maximum opening velocity U₀: maximum opening velocity
- 6. Minimum closing velocity U_c: minimum closing velocity
- 7. **Maximum valve opening P**_{max}: maximum valve opening
- 8. **Minimum valve opening P**_{min}: minimum valve opening

1.2.2 Turbine tab

The turbine tab allows to input:

- 1. Time constant T₄: steam flow time constant
- 2. **Time constant T**₅: first reheater time constant
- 3. Time constant T_6 : second reheater time constant
- 4. Time constant T₇: crossover time constant
- 5. **HP turbine power fraction K**₁: high pressure turbine power fraction
- 6. **HP turbine power fraction K**₃: high pressure turbine power fraction
- 7. **HP turbine power fraction K**₅: high pressure turbine power fraction
- 8. **HP turbine power fraction K**₇: high pressure turbine power fraction
- 9. LP turbine power fraction K_2 : low pressure turbine power fraction
- 10. LP turbine power fraction K_4 : low pressure turbine power fraction
- 11. **LP turbine power fraction K**₆: low pressure turbine power fraction
- 12. **LP turbine power fraction K**₈: low pressure turbine power fraction

2 Initial conditions

The initial output is equal to the generator mechanical power (base for power) at t = 0 s.

3 References

- [1] "Dynamic Models for Turbine-Governors in Power System Studies," Technical report PES-TR1. IEEE Power & Energy Society Jan 2013.
- [2] P. Kundur, "Power System Stability and Control", McGraw-Hill 1994