Exciters and Governors: Governor-Turbine IEESGO

Exciters and Governors: Governor-Turbine IEESGO	. 1
1 Description	. 1
1.1 Pins	. 1
1.2 Parameters	. 1
1.2.1 Governor tab	. 1
1.2.2 Turbine tab	
2 Initial conditions	. 2
References	

Tshibain Tshibungu, Jean Mahseredjian, 8/1/2016 4:26 PM

1 Description

This device is an implementation of a general model for steam turbine and governor IEESGO. This device is implemented as described in [1]. Implementation details can be viewed by inspecting the subcircuit of this device.

1.1 Pins

This device has 3 pins:

Pin name	Type	Description	Units
Pm_ic	Input	Steady-state mechanical power at t = 0, for initialization	pu
W	Input	Mechanical speed	pu
Pm	Output	Turbine mechanical power	pu

1.2 Parameters

The default set of parameters are obtained from [2].

1.2.1 Governor tab

The parameters on the Data tab are:

- 1. Governor gain K₁: Governor gain
- 2. Lag time constant T₁: governor lag time constant
- 3. Lead time constant T₂: governor lead time constant
- 4. Lag time constant T₃: governor lag time constant
- 5. **Maximum power limit P_{MAX}**: maximum power limit
- 6. Minimum power limit P_{MIN}: minimum power limit

1.2.2 Turbine tab

The turbine tab allows to input:

- 1. Time constant T₄: steam flow time constant
- 2. Time constant T₅: reheater time constant
- 3. Time constant T₆: IP-LP reheater time constant
- 4. Reheater fraction of shaft power K2: reheater fraction of power shaft
- 5. **IP-LP fraction of shaft power K**₃: IP-LP power fraction

2 Initial conditions

The initial output is equal to the generator mechanical power (base for power) at t = 0 s.

3 References

- [1] "Dynamic Models for Turbine-Governors in Power System Studies," Technical report PES-TR1. IEEE Power & Energy Society Jan 2013.
- [2] P. Kundur, "Power System Stability and Control", McGraw-Hill 1994