Exciters and Governors: Governor-Turbine WSHYDD

 Exciters and Governors: Governor-Turbine WSHYDD
 1

 1 Description
 1

 1.1 Pins
 1

 1.2 Parameters
 1

 1.2.1 Governor tab
 1

 1.2.2 Turbine tab
 2

 2 Initial conditions
 2

 3 References
 2

Tshibain Tshibungu, Jean Mahseredjian, 12/18/2016 12:50 PM

1 Description

This device is an implementation of a general model for turbine and governor WSHYDD. This device is implemented as described in [1]. Implementation details can be viewed by inspecting the subcircuit of this device.

1.1 Pins

This device has 6 pins:

Pin name	Type	Description	Units
Pref	Input	Power reference from load controller LCBF1	pu
Pm_ic	Input	Steady-state mechanical power at t = 0, for initialization	pu
W	Input	Mechanical speed	pu
Pe	Input	Electrical power	pu
g_pos	Output	Gate position	pu
Pm	Output	Turbine mechanical power	pu

1.2 Parameters

The default set of parameters are obtained from [1].

1.2.1 Governor tab

The parameters on the Governor tab are:

- 1. Deadband db₁: intentional deadband of speed governor
- 2. Deadband hysteresis ERR: deadband hysteresis of speed governor
- 3. Time constant T_D: input filter time constant

- 4. Gain K₁: derivative gain
- 5. Time constant T_F: derivative time constant
- 6. Gain K_D: double derivative gain
- 7. Gain K_P: integral gain
- 8. **Permanent droop R**: permanent droop
- 9. Time constant T_T: power feedback time constant
- 10. Gain K_G: gate servo gain
- 11. **Time constant T**_P: gate servo time constant
- 12. Gate opening velocity VELOP: maximum gate opening rate
- 13. Gate closing velocity VELcL: maximum gate closing rate
- 14. Maximum gate opening P_{MAX}: maximum gate opening
- 15. Minimum gate opening P_{MIN}: minimum gate opening
- 16. **Deadband width db₂**: Unintentional deadband of power gate
- 17. Feedback switch control: see explanation below.

There are two possible selections for the feedback mode option:

- 1. Electrical power feedback
- 2. Gate position feedback

1.2.2 Turbine tab

The turbine tab allows to input:

- 1. Time constant T_{TURB}: turbine time constant
- 2. Lead time constant multiplier ATURB: turbine lead time constant multiplier
- 3. Lag time constant multiplier B_{TURB}: turbine lag time constant multiplier
- 4. Ratio turbine-generator rating T_{RATE}: ratio turbine-generator rating

2 Initial conditions

The initial output is equal to the generator mechanical power (base for power) at t = 0 s.

3 References

[1] "Review of Existing Hydroelectric Turbine-Governor Simulation Models", Argonne national Laboratory, August 2013