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2 Objective  

The objective of this document is to present the Modular Multilevel Converter (MMC) Station model in EMTP-

RV. The document describes the main components and control blocks of MMC station models. A comparison 

between different MMC modeling is also included for validation purposes. 

3 Introduction 

The development of controllable semiconductor switches and Voltage Source Converter (VSC) technologies is 

rapidly expanding the fields of applications of HVDC and FACTS in power systems. VSC-based HVDC 

systems present several advantages in comparison with traditional line-commutated converter (LCC) based 

HVDC transmission [1]. VSC-HVDC technology combines IGBT-based VSC with dc transmission lines to 

transfer power up to 1,000 MW [2]. The potential applications of VSC-HVDC systems include interconnections 

of asynchronous systems, grid integration of off-shore wind farms, electrification of remote islands, oil and gas 

stations, and multi-terminal dc grids [11]-[3]. VSC-HVDC systems can independently control both active and 

reactive powers by maintaining stable voltage and frequency [4] which enables the supply of very weak grids 

and even passive networks [5]. Various VSC topologies, including the conventional two-level, multi-level 

diode-clamped and floating capacitor multi-level converters, have been proposed and reported in [6]. However, 

due to the complexity of controls and practical limitations, the VSC-HVDC system installations have been 

limited to the two-level and three-level diode-clamped converters. Recently, the development of the Modular 

Multilevel Converter (MMC) technology with series-connected half-bridge modules, has overcome the 

limitations of other multilevel converter topologies for HVDC applications [7]. MMC topologies allow using a 

lower switching frequency for reducing converter losses. In addition, filter requirements are eliminated by using 

a significant number of levels per phase. Scalability to higher voltages is easily achieved and reliability is 

improved by increasing the number of sub-modules (SMs) per arm [8].  

In the EMTP-RV model, two types of MMC station configurations are available: Monopole configuration (Figure 

1) and Bipole with earth grounding return (Figure 2). The Bipole configuration is composed from two identical 

Monopole configurations connected at ac and dc sides (see Figure 2). 
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Figure 1: Typical Monopole Configuration of a MMC station 

 

 

Figure 2: Bipole with earth grounding return Configuration of a MMC station 

 

Figure 3.a shows the three-phase configuration of the MMC topology. This MMC model is based on the 

preliminary MMC-HVDC system design for the planned interconnection between France and Spain 400 kV 

networks in 2013 [9][10]. The MMC is comprised of N SMs per arm which results into a line-to-neutral voltage 

waveform of (N+1) levels [10]. The inductor armL  is added on each arm to limit arm-current harmonics and 

fault currents. Each SM is a half-bridge converter as depicted in Figure 3.b and includes mainly a capacitor C 

and two IGBTs with antiparallel diodes (S1 and S2). 

Since the IGBT device is controllable, through gate signals 1i
g  and 2i

g , the SM can have three different states. 
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g is on, 2i
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v  . In the Blocked state: 1i

g is off, 2i
g  is off and SMi

v depends on the arm 

current ( armi ) direction. The capacitor may charge through S1 and cannot discharge.  
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Figure 3: a) MMC topology b) Half-bridge converter for the ith SM 

Since the MMC topology is of VSC type [13], it uses an upper level control similar to the previous VSC 

technology. However, the MMC topology requires additional controllers in order to stabilize internal variables 

(Lower Level Control): SM capacitor voltages, second harmonic circulating currents of each phase and 

modulation technique [18][14]. A top level view of the control structure is presented in Figure 4. 

 

Figure 4: Control hierarchy for the MMC station 
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Several control methods area available for Upper Level Control. Among them the power-angle and vector-

current controls are the mostly widely used. The principle of power-angle control is simple. The active power is 

controlled by the phase-angle shift between the VSC and the ac system, while the reactive power is controlled 

by varying the VSC voltage magnitude [15]. Power-angle control (or V/F control) is used when the VSC 

converter is connected to an ac system with passive load or for wind-turbine applications [11]. Vector-current 

control [4] is a current-control-based technology. Thus, it can naturally limit the current flowing into the 

converter during disturbances. The basic principle of vector-current control is to regulate the instantaneous 

active and reactive powers independently through a fast inner current control loop. By using a dq 

decomposition technique with the grid voltage as phase reference, the inner current control loop decouples the 

current into d and q components, where outer loops can use the d component to control active power or dc 

voltage, and the q component to control reactive power or ac voltage. Due to its successful application in 

HVDC transmission system, vector-current control has become the dominant control method for grid-

connected VSCs in almost all applications today [17]. 

4 MMC station model 

This section describes the main components and control system of the MMC station model available in EMTP-

RV. 

4.1 Overall Model Description 

The model is a 1,060 MVA MMC station connected to a 400 kV ac system at the Point of Common Coupling 

(PCC) through a 400/320 kV step-up transformer and 640 kV pole-to-pole dc voltage, as shown in Figure 5. It 

should be noted that these parameters can be modified in the main mask.  
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Figure 5: MMC station – EMTP-RV 
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4.3 Main ac breaker 

The main ac breaker is used to connect the MMC station to the ac grid. During normal operation, the ac 

breaker is closed. The breaker is controlled from the protection system. If the protection system is active and a 

dc overcurrent is detected, the MMC station is tripped (by opening the ac breaker) and the MMC is blocked. 

4.4 AC converter breaker 

The ac converter breaker is used for the start-up sequence. When it is open, the insertion resistance 

(connected in parallel) will limit the current flowing into the MMC. If the start-up sequence is unchecked, the ac 

converter breaker is always closed. 

4.5 Start point reactor 

Since the secondary winding of the transformer has a Delta connection, the start point reactor is used to give 

to the MMC a reference to ground. 

4.6 Modular Multilevel Convert (MMC) 

The large number of IGBTs in MMCs complicates the simulations in electromagnetic transient type (EMT-type) 

simulation tools. Detailed MMC models must include the representation of thousands of IGBTs and small 

numerical integration time steps are required to accurately represent fast and multiple simultaneous switching 

events. The excessive computational burden introduced by such models highlights the need to develop more 

efficient models. A current trend is based on simplified and averaged value models capable of delivering 

sufficient accuracy [19] in dynamic simulations.  

Average Value Models (AVMs) approximate system dynamics by neglecting switching details [20]. They 

require significantly less computational resources and can use larger integration time steps leading to much 

faster computations.  

Circuit reduction is achieved by the replacement of IGBTs by on/off resistors in the SMs. The equivalent circuit 

usage allows reducing the number of operations and improving computational performance. 

Four types of MMC models are available in EMTP-RV. These models can be used according to the type of 

study and required accuracy. MMC model evolution in decreasing complexity is depicted in Figure 6. Black 

boxes represent simplifications of each model. It is expected, that by decreasing model complexity, 

computational performance can be increased. 
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Figure 6: MMC model evolution in decreasing complexity 

The model details are presented in the next sections. 

4.6.1 Model 1 – Full Detailed 

This model is based on nonlinear IGBT representation. It is the most accurate model and can account for 

every conduction mode of the MMC. This model requires the highest computational time. It can be used for 

advanced studies, prototyping different SM circuit topologies and to validate results obtained with simplified 

models listed below [18]. It can be also used to calibrate parameters in simplified models. Figure 7 shows the 

subcircuit hierarchy of a full detailed model of MMC-401L (i.e. 400SM/arm). 

..

.
..
.

Model 4Model 3Model 2Model 1
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Figure 7: Subcircuit hierarchy of Model 1-Full Detailed for a MMC-401L 

 

For this type of model, three MMC levels are available in EMTP-RV and can be set from the main mask: MMC-

401L (400SM/arm), MMC-101L (100SM/arm) and MMC-21L (20SM/arm). 

4.6.2 Model 2 - Detailed equivalent 

In this model the SM power switches are replaced by ON/OFF resistors: ONR  (small value in mΩ) and OFFR  

(large value in MΩ). This approach allows performing an arm circuit reduction for eliminating internal electrical 

nodes and allowing the creation of a Norton equivalent for each MMC arm. 1R  and 2R  are controlled and used 

for replacing the two IGTB/diode combinations. With the trapezoidal integration rule, each SM capacitor is 

replaced by an equivalent current history source ( )h
C i
i t t  in parallel with a resistance  / 2CR t C   (Figure 

8), where t  is the numerical integration time-step. The derivation of these equations and the block station 

conditions can be found in [21].  
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Figure 8: Discretized SM with simplified IGBT/diode models 

Table 1 shows the algorithm used for Model 2. In point 2 of Table 1, it can be seen that the computation of 

ON/OFF states is straight forward since only gate signal values are required. When the Blocked state is set, 

only the freewheeling diodes can conduct. The diode conduction states depend on voltage and current 

variables (Table 1 point 2) that are known only from the previous iteration ( 1( )SMi
v t  and 1( )Ci

v t ).  

Table 1: MMC arm algorithm of Model 2 

1. Retrieve ( )armv t  from network solution and compute ( )armi t  

2. For 1,2,...,i N  

Set 1i
R  and 2 i

R  values: 

 

 


    
 

    
 

 

1 2

1 2

1 1

1 2

1

1 2

1 2

(SM  is ON) ;

(SM  is OFF) ;

(SM  is Blocked)

( ) 0 and ( ) ( )

;

( ) 0 and ( ) 0  

;

;

i ON OFFi i

i OFF ONi i

i

arm SM Ci i

ON OFFi i

arm SMi

OFF ONi i

OFF OFFi i

if R R R R

elseif R R R R

elseif

if i t v t v t

R R R R

if i t v t

R R R R

else R R R R

 



 

 

 

 

 

 

 

 

Compute  ( )Ci
v t  and  ( )Ci

i t  

Compute Thevenin equivalent of each SM 

Compute SM voltages for next iteration: ( )SMi
v t   

3. Compute and send Norton equivalent of the arm 

 

When the Blocked state is set for one of the SMs and a change in conduction state of one of the diodes is 

detected, the EMTP-RV iterative process is activated in the current time-step in order to find the correct 

conduction states and the trapezoidal integration rule is switched to the Backward Euler method for the next 

time-step (see Figure 9). 

+

-

+

-

armi
h
Ci
iCR

Ci
i

Ci
v

SMi
v 2i

R

1i
R

+
+ +

+
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Figure 9: Bloc diagram, iterative process used for Model 2 

The main advantage of Model 2 is the significant reduction in the number of electrical nodes in the main 

system of network equations. The algorithm still considers each SM separately and maintains a record for 

individual capacitor voltages. Figure 10 presents the subcircuit hierarchy of model 2. 

 

Figure 10: Subcircuit hierarchy of Model 2-Detailed Equivalent for a MMC-401L 
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For this type of model, three MMC levels are available in EMTP-RV and can be set from the main mask: MMC-

401L (400SM/arm), MMC-101L (100SM/arm) and MMC-21L (20SM/arm). 

4.6.3 Model 3 - Switching function of Arm 

In this model each MMC arm is averaged using the switching function concept of a half-bridge converter. Let Si 

be the switching function which takes the value 0 when the state of SM is OFF and 1 when it is ON. For each 

SM  

 
SM i Ci i

C i armi

v S v

i S i




 (1) 

Assuming that capacitor voltages of each arm are balanced, the average values of capacitor voltages are 

equal. In addition, by neglecting the voltage differences between capacitors, the following assumption can be 

made: 

 
1 2

...
Ctot

C C Ci

v
v v v

N
     (2) 

where Ctot
v represents the sum of all capacitor voltages of an arm. The accuracy of assumption (2) increases 

when the number of SMs per arm is increased and/or when the fluctuation amplitudes of capacitor voltages 

are decreased. This assumption allows deducing an equivalent capacitance armC C N  for each arm. 

By defining the switching functions of an arm as follows: 

 
1

1 N

i n

i

S s
N 

  (3) 

and including the linear conductivity losses ( ONR ) for each SM, the following switching functions can be 

derived for each arm when the SMs are in ON/OFF states: 

 
 arm n C ON armtot

C n armtot

v s v NR i

i s i

 


 (4) 

where armv  is the arm voltage. Half-bridge converters are non-reversible in voltage. In order to avoid negative 

voltages, a diode D is added in parallel with the equivalent capacitor (Figure 11.a). 

When all SMs are in the Blocked state, each MMC arm can be simply represented by an equivalent half-bridge 

diode connected to the equivalent capacitor (Figure 11.b).  
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Figure 11: Switching function model of MMC arm: a) ON/OFF states model, b) Blocked state model 

 

By reducing each arm to an equivalent switching function model, the SMs are no longer represented. This 

means that the balancing controls of capacitor voltages in each arm and redundant SM impacts cannot be 

studied using this approach. However, circulating currents and the linear conduction losses can be 

represented. Moreover, the energy transferred from ac and dc sides into each arm of the MMC is taken into 

account, which is useful for control system strategies based on internal MMC energy balance.  

Since this model includes two circuit models (see Figure 11), its implementation in EMT-type programs is hard-

coded, using a DLL block, to increase computational performance. Depending on the states of each arm, the 

adequate circuit is interfaced with the main network. 

 

 

Figure 12: Subcircuit hierarchy of Model 3-Switching function, MMC arm 

 

For this type of model, any number of MMC levels can be represented in EMTP-RV and can be set from the 

main mask. 
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4.6.4 Model 4 - AVM based on power frequency 

In the average value model (AVM), the IGBTs and their diodes are not explicitly represented and the MMC 

behavior is modeled using controlled voltage and current sources. The classical AVM approach developed for 

2 and 3 level VSCs in [22] is extended to MMCs in [9]. It is used by assuming that the internal variables of the 

MMC are perfectly controlled, i.e. all SM capacitor voltages are perfectly balanced and second harmonic 

circulating currents in each phase are suppressed. Based on the approach presented in [9], the following 

equation can be derived from Figure 3 for each phase , ,j a b c  

 
2

jarm
conv jj

diL
v v

dt
   (5) 

Assuming that the total number of inserted SMs in each phase is constant and since the circulating current is 

assumed to be zero,  

 u l dcj j
v v V   (6) 

With the above equations (5) and (6), the MMC can be represented as a classical VSC (2 and 3 level 

topologies). Thus, using an approach similar to [22], the controlled voltage sources become: 

 
2

dc
conv refj j

V
v v  (7) 

where ref j
v are the voltage references generated from the inner controller. The dc side model is derived using 

the principle of power balance, thus it assumes that no energy is stored inside the MMC converter:  

 
, ,

dc dc conv jj
j a b c

V I v i


   (8) 

The dc current function is derived from(7): 

 
, ,

1

2
dc ref jj

j a b c

I v i


   (9) 

The equivalent capacitor dcC  (shown in Figure 13) is derived using the energy conservation principle [9] and it 

is given by 6dcC C N . 

Unlike the classical VSC model, an inductance is included in each arm of the MMC, thus an equivalent 

inductance should be also added on the dc side. Since one third of the dc current flows in each arm and the 

same dc current flows in upper and lower arms of each phase, the equivalent inductance is given by 

 2 3arm armdc
L L . The total conduction losses of the MMC can be found using  2 3loss ONR N R . The 

implementation of Model 4 in EMTP-RV is presented in Figure 13 
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Figure 13: Subcircuit hierarchy of Model 4-AVM 

 

4.7 Control System 

Since the MMC topology is of VSC type [13], it uses an upper level control similar to the previous VSC 

technology.  

4.7.1 Principle of operation 

In order to understand the principle of the VSC-MMC control system, let us first consider the two bus system 

(Figure 14), where Vs is the ac voltage source, Vconv is the ac voltage of the converter and X is the equivalent 

inductance between the ac source and converter (i.e. transformer leakage inductance, equivalent arm 

inductance, etc.). The losses are neglected for simplification purposes. The transferred active and reactive 

powers from the source to the converter are given by the following relationships: 

 
2

sin( )

cos( )

S conv
R

S conv conv
R

V V
P

X

V V V
Q

X










 (10) 

where   is the angle between the two voltages. 
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Figure 14: Two-bus system representing the functionality of the VSC-MMC control system 

Assuming that the angle   is small, the power equations (10) can be linearized as follow: 

 
 

S conv
R

conv S conv
R

V V
P

X

V V V
Q

X




 (11) 

From (11), on can see that by controlling the voltage amplitude and phase angle of the converter, it is then 

possible to regulate the active and reactive powers at a desired set-point. 

4.7.2 Upper Level Control and Protection system 

The contents of the UpperCtrl_Protect block are presented in Figure 15. All measured signals entering the 

control system are, first, converted to pu (Convert_to_pu bloc) and then filtered by means of a Low-pass filter 

with a cut-off frequency equal to 2kHz (LP_filter bloc). The UpperCtrl block includes the Upper Level Control 

system that will be described in the next section. The Protect_StartUp block includes the dc overcurrent and 

Deep Voltage Sag detectors for protecting the converter and the start-up sequence devices. 

 

 

Figure 15: Upper Level Control and Protection System 

4.7.3 Upper Level Control 

The UpperCtrl block is presented in Figure 16. As previously mentioned, all variables are in pu except for the 

theta angle that is in radians.  
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The three following blocks: Clarke_transfo, signal_calculations and dq_transfo compute the required variables 

needed for the control system. Clarke transformation is implemented in the Clarke_transfo block. AC voltage, 

active and reactive powers are computed in the signal_calculations block. The dq_transfo block is used to 

extract the dq components from the three-phase ac voltages and currents. 

The transformation matrix T  in equation (12) transforms the three-phase variables (voltages and currents) to 

two quadrature axis (d and q reference frame) components rotating at synchronous speed /w d dt . The 

phase angle   is derived, found by mans of an internal oscillator (if V/F control is selected from the main 

mask) or found by the PLL allowing the synchronization of control parameters with the system voltage. In the 

matrix T , the direct axis d is aligned with the grid voltage.  

 

cos( ) cos( 2 / 3) cos( 2 / 3 )
2

sin( ) sin( 2 / 3) sin( 2 / 3)
3

1/ 2 1/ 2 1/ 2

t t t t

T t t t

    

    

  
 

     
 
  

 (12) 

Using the transformation matrix T , the dq voltage and current variables can be deduced: 

 dq abci Ti  (13) 

 _dq abc gridv Tv  (14) 

The active and reactive powers and the ac grid voltage (in pu) are calculated from the dq reference as follows: 

 d d q qP v i v i   (15) 

 d q q dQ v i v i    (16) 

 2 2
grid d qv v v   (17) 

Two main structures of upper level controls exist (see Figure 4): V/F control (or power-angle control) 

represented by the VFcontrol block and vector-current control represented by the Outer_control and 

Inner_control (Figure 16). The regulations of variables are performed through a PI control loop. All PI 

controllers are equipped with anti-windup function. This later will prevent the integral part from the 

accumulation of errors when the output value reaches the limit set by the user and enhances control 

performances [23]. The integral and proportional gains of each PI controller are automatically calculated based 

on the settling time (within 5% of error) chosen by the user. These settling times (or constant times) can be 

modified in the main mask. The background color of the MMC station block changes automatically depending 

on the selected type (see Table 2). 
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Table 2 Assigned background colors for each Outer control type 

Outer Controller Type  Assigned Color for MMC model 

Active Power Control (Green color) 

 

DC voltage Control (Cyan color) 

 

P/Vdc Droop Control (Pink color) 

 

V/F control (Gray color) 

 

 

A detailed description of each control block is provided in the following sections. 

The selector block is used to switch automatically between vector-current control and V/F control depending 

on the outer control type chosen by the user from the main mask. 

The Synchronization block is required for synchronization with the ac grid. It includes PLL and the internal 

oscillator. The Linearization_dq2abc block is for linearization and converts from dq to abc reference. 

 

Figure 16: Upper Level Control block 
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To produce three-phase ac voltages, the converter needs three variables: magnitude, phase angle and 

frequency. In the V/F control, the phase angle and frequency are generated from the internal oscillator (see 
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  i
grid p ref grid

k
v k v v

s

 
    

 
 (18) 

Only the integer part is used in the presented EMTP-RV model; however user can use also a PI control. The 

tuning of the integral gain (VFctrl_ki) is dependent from the ac grid impedance at PCC. 

As grid voltage vector is aligned with the d axis and based on [24], the following equation can be driven: 

    _ 0d ref grid HP dv V v H s i    (19) 

 _ 0q refv   (20) 

where 0V  is the nominal voltage (equal to refv ),  HPH s  is a high-pass filter and the term  HP dH s i  is used for 

damping (further information can be found in [24]). The VF_control block is shown in Figure 17. 

 

Figure 17: V/F control (Vac/f control) 

V/F control is usually used when the VSC converter is connected to an ac system with passive load or for 

wind-turbine applications. 
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ability to limit the current flowing into the converter during disturbances. Due to its successful application in 

HVDC transmission system, vector-current control has become the dominant control method for grid-
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2

u j jdc
u arm arm u transfo transfo j gridj j j

di diV
v L R i L R i v

dt dt
       (21) 

 
2

j jdc
arm arm transfo transfo j gridj j j

di diV
v L R i L R i v

dt dt
       (22) 

The following variable is defined 

 
2

uj j

conv j

v v
v


  (23) 

Using (23) and subtracting (21) and (22): 

 
2 2

jarm arm
grid conv transfo transfo jj j

diL R
v v L R i

dt

   
       

   
 (24) 

By applying Park transformation, (24) becomes: 

 

 

 

2

2

i arm
conv ref d p d transfo qd d

i arm
conv ref q p q transfo dq q

k L
v i i k v L i

s

k L
v i i k v L i

s





   
         

   

   
         

   

 (25) 

The inner controller is presented in Figure 18 and permits controlling the reference voltages (Vd_ref and 

Vq_ref) that will be used for the Lower Level Control. In order to decouple the d- and q-axis, a feed-forward 

technique is used to compensate cross-coupling terms.  

 

Figure 18: Inner Control 

The outer controller is shown in Figure 19. It provides the reference currents (Id_ref, Iq_ref) to the inner 

controller. From the main mask, the user can choose between three types of outer controls: active power 
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(violet color) are configured to automatically switch depending on the chosen control type. Also, in the main 

mask, the user can choose between reactive power control (Q control) and ac voltage control (Vac control). 

For the later, the selector is colored in pink to switch automatically form Q control and Vac control. 

4.7.3.2.1 Active power control (P control) 

As grid voltage vector is aligned with the d axis, the q component of the grid voltage is equal to zero and d 

component is equal to the voltage magnitude. Equation (15) becomes: 

 d dP v i  (26) 

An integral control is sufficient to produce the desired d current reference (Id_ref). The control law of P control 

is defined respectively as: 

  1 i
d p refref

d

k
i k P P

v s

 
   

 
 (27) 

4.7.3.2.2 DC voltage control (Vdc control) 

From the MMC-AVM model (described in section 4.6.4) it can be found that SM capacitors can be represented 

as an equivalent capacitor dcC . Since the energy in the equivalent inductance DCL  is small, it can be 

neglected. The following equation can be deduced  

 dc
dc d dc

dV
C i I

dt
   (28) 

After neglecting the feed-forward component dcI , a PI-control can be applied to regulate the DC voltage:  

  i
d p dc dcref ref

k
i k V V

s

 
   
 

  (29) 

4.7.3.2.3 P/Vdc Droop control 

The Droop control functionality in the dc grid is similar to the Droop control in the ac grid. In the ac grid the 

relationship is between frequency and active power, in the dc grid the DC voltage is a function of active power 

and the droop coefficient is given by: 

 dc
droop

V
k

P





  (30) 

The active power delta is added over the active power reference (Pref) as shown in Figure 19. 

4.7.3.2.4 Reactive power control (Q control) 

As the grid voltage vector is aligned with the d axis, the q component of the grid voltage is equal to zero and d 

component equal to the voltage magnitude. The equation (16) becomes: 

 d qQ v i   (31) 
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An integral control is sufficient to produce the desired q current reference (iq_ref). The control law of Q control 

is defined as  

  1 i
q refref

d

k
i P P

v s

 
   

 
 (32) 

4.7.3.2.5 AC voltage control (Vac control) 

From the reactive power equation(11), the voltage drop gridv  over the reactance ( PCCX ) of the ac grid at 

PCC can be approximated as:  

 PCC
grid s grid

s

X Q
v v v

v
     (33) 

Since the grid voltage vector is aligned with the d axis and using (31), (33) becomes: 

 grid PCC dv X i   (34) 

An integral control is sufficient to produce the desired q current reference (Iq_ref): 

  i
q ref gridref

k
i V V

s

 
   

 
 (35) 

 

Figure 19: Outer Control block 
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constant references (used for normal operation of MMC station) to a time-domain varying reference (used for 

start-up sequence). 

A current limiter is included in the outer control block in order to limit the converter current reference to a pre-

set value. The current limiter control block is presented in Figure 20. The maximum converter currents are 

defined in the main mask. The user can choose between P or Q priority. The choice of which priority to choose 

will depend on the application. For instance, if the converter is connected to a strong grid used for 

transmission, the active reference current will be given high priority to produce more active power, when the 

current limit is exceeded. If the converter is connected to a weak grid or used to supply an industrial plant, the 

VSC will give high priority to the reactive reference current to keep up the ac voltage when the current limit is 

exceeded. The remaining capability is then available for active power production.  

 

Figure 20: Current reference limiter – EMTP-RV 

The synchronization block includes the internal oscillator and the PLL. Depending on the outer control type 

chosen from the main mask, the selector block (colored in violet) switches automatically between islanded and 

non-islanded operations. 

 

Figure 21: Synchronization - EMTP-RV 

The main function of the PLL is to synchronize with the phase angle and frequency of the ac grid voltage. The 

grid voltage vector is chosen to align with the d axis reference. The PLL model is presented in Figure 22.  
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Figure 22: PLL Model 

The internal oscillator is presented in Figure 23. It simply produces the phase angle. 

 

Figure 23: Internal oscillator 

The magnitude of the reference vector Vdq_ref is linearized and limited at 1.5pu maximum value. The 

reference voltages are then converted to abc frame (Vabc_ref) as shown in Figure 24. Note that for P/Vdc 

droop control, the linearization is by-passed for better dynamic performance. 

 

Figure 24: Linearization and dq to abc transformation  

4.7.4 Lower Level Control 

Unlike previous VSC technology, the MMC topology requires additional controllers in order to stabilize internal 

variables. The top level view of the control structure is presented in Figure 4. 

The Lower Level Control block is hidden by means of a DLL block; hence, this control system is not accessible 

and cannot be modified by the user.  

Lower level control is composed of: Circulating Current Suppression Control (CCSC), Nearest Level Control 

(NLC) modulation and Capacitor Balancing Algorithm (CBA). In this section, only a brief description is given for 

each main component. 
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4.7.4.1 Circulating Current Suppression Control (CCSC) 

Voltage unbalances between the arm phases of the MMC introduce circulating currents containing a second 

harmonic component which not only distorts the arm currents, but also increases the ripple of SM capacitor 

voltages. Circulating currents can be eliminated by adding a parallel capacitor (resonant filter) between the 

mid-points of the upper and lower arm inductances on each phase [26] or using an active control over the ac 

voltage reference refabc
v  [25]. The latter is chosen in this control system. 

 

Figure 25: Circulating Current Suppression Control (CCSC) 

4.7.4.2 NLC modulation 

Traditional modulation techniques proposed to date for MMCs include Phase-Disposition Modulation (PD-

PWM), Phase-Shift Modulation (PS-PWM), Space-Vector Modulation (SV-PWM), and the improved Selective 

Harmonic Elimination method (SHE). As the number of levels increases in MMCs, PWM and SHE techniques 

become cumbersome for EMT-type simulations. Therefore, more efficient staircase-type methods, such as the 

Nearest Level Control (NLC) technique, can be used. The models developed in EMTP-RV use the NLC 

technique proposed in [25]. 

4.7.4.3 Capacitor Balancing Control 

The capacitor voltage at all SMs must be balanced and kept the same during normal operation. To achieve 

this, the capacitor voltage (Figure 3.a) must be monitored and switched ON and OFF based on a Balancing 

Control Algorithm (BCA). The BCA measures the capacitor voltages at each SM at any instant and sorts them 

before selecting the upper and lower SM to switch ON. The number of SMs is determined based on the Nup(t) 

and Nlow(t) switching functions, where Nup(t)+Nlow(t) corresponds to the total number of SMs per arm. To 

improve the efficiency of the algorithm, the model includes a trigger control that activates the BCA only when a 

new (ON/OFF) state in the Nup,low(t) functions is reached. This will avoid switching the SMs at each time step. 
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Figure 26: Balancing control algorithm (BCA)  

 

It is noted that, all these controllers are included when the MMC Model 1 (Full detailed) and Model 2 (Detailed 

equivalent) are chosen from the main mask. However, if the Model 3 (Switching function of Arm) is selected, 

the BCA device is excluded from the Lower Level Control and if the Model 4 (AVM) is selected, the Lower 

Level Control is not represented. 
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Figure 27: Protection system and Start-up sequence 

4.9 Start-up sequence 

When the Start-up Sequence is unchecked, at simulation t=0:  

 the initial Capacitor voltage of each SM ( Ci
v ) is set to nominal voltage  

 the main ac breaker is closed  

 the ac converter breaker is closed  

 the SMs are at deblock state 

 the P and Vdc references are set at their desired values (Pref, Vdc_ref) 

 

When the Start-up sequence is checked, 6 parameters have to be configured: 

 closing time of ac breaker 

 closing time of ac converter breaker 

 deblocking time of SMs 

 ramping start time dc voltage reference 

 time to switch from Vdc-Control to P-control 

 start time ramping of active power reference 

4.10 Initial Conditions and Load-flow solution 

For the load-flow solution the MMC station model is represented by a PQ constraint (Figure 28). The PQ 

constraint is set from the main mask. The voltage source (PQ_ init) initializes the steady-state operation with 

the load-flow parameters and is disconnected form the system after the “initialization time” set in the main 

mask.  

Start-up sequence

Deep Voltage Sag protection

Idc protection system

f(u)1

ABS(u[1])>#Idc_limit#

If current exceed 5pu:
 - AC breaker is open
 - converter is blocked

f(u)
1

2

u[1]*(u[2]<0.5)+ (u[2]>0.5)

Delay

1

0 -> switch is opened
1 -> switch is closed

converter_BRK

Idc

f(u)

(#Start_up#==1) * (t<#CloseTime_AC_BRK#)

Page

0 -> switch is opened
1 -> switch is closed

AC_BRK_start_up

Page

0 -> MMC blockked
1 -> MMC activated

block_MMC_BRKf(u)

(#Start_up#==1) * (t<#DeblockTime_SMs#)

0 -> switch is opened
1 -> switch is closed

AC_BRK
PageAC_BRK_start_up

PageAC_BRK_IdcProtection

Pageblock_MMC_IdcProtection
Pageblock_MMC_BRK

f(u)

(#Start_up#==1) * (t<#CloseTime_converter_BRK#)

0 -> MMC activated
1 -> MMC blocked

block_MMC

StarPointReactor

release_delay oi

release_delay1

 LP Filter

2nd Odrer
oi

LP_filter_2nd1

 LP Filter

2nd Odrer oi

LP_filter_2nd2

 LP Filter

2nd Odrer
oi

LP_filter_2nd3

f(u)1

u[1]<0.1

threshold

f(u)1

u[1]<0.1

threshold

f(u)1

u[1]<0.1

threshold

Page block_MMC_DeepVoltageSag

Pageblock_MMC_DeepVoltageSag

SUM

1

2

3

Fm8

Vac_primary

va

vb

vc

inst to polar

in mag

rad

ph_1

inst to polar

in mag

rad

ph_2

inst to polar

in mag

rad

ph_3

scope

DVS_signal

OR

1

2

3

Fm3

f(u)1

Protection_init1

u[1]*( t>#init_Protection# )

f(u)1

Protection_init3

u[1]*( t>#init_Protection# )

Delay

4e-5

Artificial delay

Delay

Artificial delay to account 
for AC Breaker dynamic

0.04

Page AC_BRK_IdcProtection

Page block_MMC_IdcProtection

c
#StarPointReactor_BRK#

C1

f(u)1

activate_protection

u[1]*( #activate_Protection# > 0)

f(u)1

activate_protect1

u[1]*( #activate_Protection# > 0)



29 

 

 

Figure 28: Load-flow and initialization - EMTP-RV 

 

5 Simulation results 

This section provides a comparison between the four types of MMC models: Model 1, 2, 3 and 4. The dynamic 

behavior comparison is conducted for step-change of active power reference, three-phase: ac fault, pole-to-

pole DC fault and start-up sequence [10]. 

The studied system is presented in Figure 29 and is available in the Examples folder of EMTP-RV. The control 

strategy considers an active/reactive power control on the sending end (VSC_1) and a dc voltage/reactive 

power control on the receiving end (VSC_2). The ac grids are represented as equivalent sources with a short-

circuit level of 10,000 MVA. The transmission capacity of the system is 1,000 MW from S1 to S2. The DC 

cable is modeled using a wideband line model [27]. Each MMC station considers a 401-level MMC (400 

SMs/arm). The Model 1 (with nonlinear IGBT/diode model) constitutes the reference model. 

 

Figure 29: MMC-HVDC transmission test system 
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respectively (see Figure 3). Since arm details are not represented in Model 4 (see Figure 13), only Models 1, 2 

and 3 are compared here. As it can be noticed, the three models give similar and accurate results. 

 

 

Figure 30: Active power responses, power flowing into VSC_1 

 

a) VSC_1 phase A, difference current diffa
i  

 

b) VSC_1 phase A upper and lower arms, Ctot
v  

Figure 31: Step change in active power reference for VSC_1 

5.2 Three-phase ac fault 

A 200 ms three-phase-to-ground fault is applied on the ac side of VSC_2 (see Figure 29) at 1 s of simulation 

time. Figure 32 compares the dynamic responses. The results from Models 2 and 3 are similar to Model 1, and 

Model 4 remains sufficiently accurate. Figure 32.d shows an attenuated oscillation around 413 Hz during the 

fault, which has slightly higher amplitude (peak-to-peak mean value 0.008 pu) in Models 1 and 2 than in Model 

3 (peak-to-peak mean value 0.001 pu). This oscillation is related to the interaction between the MMC and the 

dc cable. The current increases rapidly during the ac fault. The capacitor voltage fluctuations of each SM will 

also increase and the assumption in equation (2) will become less accurate. This transient generates 

harmonics in the MMC that interact with the dc cable. 
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a) VSC_2 phase A current ai  

 

b) VSC_2 phase A voltage av  

 

c) VSC_2 dc current dcI  

 

d) VSC_2 dc voltage dcV  

Figure 32: Three-phase ac fault, 401 levels, blue line for Models 1 and 2, green line for Model 3 and red 

line for Model 4. 

5.3 Pole-to-pole dc fault 
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cable. The fault is applied at 1.9 s. Since the protection system is activated, the ac breaker is opened and the 

MMCs are blocked after fault occurrence. The dc and ac currents in VSC_1 are compared in Figure 33 for 
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different models. The dc current peak during a pole-to-pole fault reaches a value of approximately 8.2 pu for 

Models 1 to 3. A peak value of 7.3 pu is reached with Model 4. However, the ac waveforms of Model 4 are 

close to the other models. 

From the zoomed waveform of Figure 34, it can be noticed, that just after the dc fault occurence, Model 4 

accurately mimics the slope and peak values of dcI . However, after around 1 ms, the behavior becomes 

different, due to the inaccurate representation of the MMC blocked state in Model 4. 

 

a) VSC_1 ac current: ai   

 

b) VSC_1dc current: dcI  

Figure 33: DC fault results blue line for Models 1 and 2, green line for Model 3 and red line for Model 4 

 

Figure 34: Zoomed waveform, VSC_1, dcI  

5.4 Start-up sequence 

The start-up sequence procedures of all MMC stations are activated for this simulation. In this report, only the 

first 200 ms of simulation are shown. However, the entire start-up sequence example is available in the 

example folder: “MMC_HVDC_link_StartUp.ecf”. Since arm details are not represented in Model 4 (Figure 13), 

this model cannot be used to study start-up. Only Models 1, 2 and 3 are compared in this document.  
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a) VSC_1 phase A; upper arm current ua
i  

 

b) VSC_1 phase A; upper arm voltage ua
v  

 

c) VSC_1 phase A; upper arm Ctotua
v  

Figure 35: VSC_1 phase A variables, start-up sequence, 401 levels 

 

Since in Figure 35 both Models 2 and 3 are able to match the results from Model 1, it is concluded that these 

two simplified models can be used to study converter start-up. 

The zoomed waveforms of Figure 36 are used to highlight the detailed modeling effect of power switches in 

Model 1. It is observed that Model 1 mimics the reverse recovery behavior of diodes, whereas in Models 2 and 

3 this behavior cannot be represented due to the linear representation of power switches. 
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b) Zoomed waveform VSC_1 phase A, upper arm current ua
i  

 

b) Zoomed waveform VSC_1 phase A, upper arm voltage ua
v  

Figure 36: Zoomed waveform VSC_1, phase A variables for start-up sequence 
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