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1 INTRODUCTION
This document presents generic EMTP models for Photovoltaic (PV) Park that can be used for

stability analysis and interconnection studies.
Interconnecting a large-scale PV into the bulk power system has become a more important issue

due to its significant impact on power system transient behavior. Failure to perform proper
interconnection studies could lead to not only non-optimal designs and operations of PVs, but also
severe power system operation and even stability problems. Manufacturer-specific models of PVs are
typically favored for the interconnection studies due to their accuracy. However, these PV models have
been typically delivered as black box model and their usage is limited to the terms of nondisclosure
agreement. Utilities and project developers require accurate generic PV models to perform the
preliminary grid integration studies before the actual design of the PV park is decided. Accurate generic
PV park models will also enable the researchers to identify the potential PV grid integration issues and
propose necessary countermeasures properly.

This PV park model is aggregated, the collector grid and the PV inverters are represented with
their aggregated models. However, the model includes the park controller to preserve the overall control
structure in the PV park. The inverters and the park control systems include the necessary
nonlinearities, transient and protection functions to simulate the accurate transient behavior of the park
to the external power system disturbances.
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2 Model description
The EMT model presented in this document do not include the park transformer OLTC and any

reactive power compensation device (such as Static VAR Compensator).

2.1 General

2.2 PV module

2.2.1 Parameters
This report presents the modeling of PV arrays in EMTP just by using the manufacturer’s datasheet.
The model is an equivalent electrical circuit with one nonlinear diode as illustrated in Figure 1:

Figure 1  Equivalent circuit of a PV array
The electrical parameters of the components in the equivalent circuit are not readily available in
datasheets. This report explains how to obtain the parameters using the datasheet information only and
without performing any physical experiments.
First, the available information in datasheets, useful for the computation of parameters, is defined:

maxP : Maximum power

maxPV : Voltage at maximum power

maxPI : Current at maximum power

ocV : Open circuit voltage

scI : Short circuit current

iK : Temperature coefficient of short circuit current

vK : Temperature coefficient of open circuit voltage

sN : Number of cells per module (in series)
All these data are given for standard test conditions, obtained at a temperature of 25°C and for an
irradiance of 1000 W/m².

225     1000 /ref refT C G W m  

One last data which is defined indirectly by the datasheet is the ideal factor a . This factor depends on
the PV cell technology. A table in [1] gives the value of ideal factor for different PV technologies. This
factor also varies with the irradiance [2], but the variation is low and it is considered constant in our
model.
Finally, the actual atmospheric conditions are required: temperatureT and irradianceG . Temperature
is considered constant during time domain simulations given the time frame of typical EMT-type studies.
The irradiance, however, can be constant or variable as defined by the user. More details are given at
the end this document.
The relation between PVI  and PVV  in Figure 1  is given by:
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s
ph diode

PV PV
PV

p

V I RI I I
R


   (1)

where diodeI is the current flowing through the diode, sR is the series resistance and pR is the parallel

resistance.
The next part explains how to obtain these electrical parameters.

2.2.2 Diode parameters
First, diode parameters need to be calculated using the standard conditions data (usually an irradiance
of 1000 W/m2 and a temperature of 25°C).

0 exp 1diode
diode

th

V
I I

aV
  

   
   

(2)

where
PV PV s

diode
s

V I RV
N


 (3)

The division by sN is because we consider the diode for only one cell. As there are sN cells in series,
the voltage is equally divided on the sN diodes.
The threshold voltage is:

ref
th

kT
V

q
 (4)

where k is the Boltzmann’s constant, q the charge of an electron and refT the reference temperature in

Kelvin.
And the reversed saturation current is:

0

exp 1
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s th

II
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(5)

From this, equation (1) becomes:

0 exp 1PV PV s PV PV s
PV ph

p s th

V I R V I R
I I I

R aN V
   

     
   

(6)

In this equation there are still three unknown variables: phI , sR and pR .

To obtain these values the equations described in [3] are used.  The equations are, however, solved
here in a different way.
The goal here is to express phI  and pR in function of sR . In such a case only one unknown variable

remains, and the non-linear equation obtained can be solved with a numerical method.
Equation (6) is taken in maximum power conditions (voltage and current are given in datasheet) and
from it a function f in function of sR is defined:

0( )  exp 1maxP maxP s maxP maxP s
s ph maxP

p s th

V I R V I R
f R I I I

R aN V
   

      
   

(7)

The objective here is to find such an sR  that the function f becomes zero.

2.2.3 Definition of 𝑹𝒑
To obtain this resistance another equation is required. The derivative of power with respect to voltage
is used here. In maximal power condition, this derivative is zero.
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From (6) the derivative is calculated and taken in maximal power condition:
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Equation (9) is inserted into (8) and pR is isolated:

0
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(10)

2.2.4 Definition of 𝑰𝒑𝒉
As under short circuit conditions the voltage is low, the current flowing through the diode is negligible.
In this case, there are only two resistances to be considered. As the short-circuit current is the one
flowing in sR we have:

p
sc ph

s p
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
(11)
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By replacing pR with (10):
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After simplification:

0 expmaxP s maxP maxP s
ph sc

maxP s maxP s th s th

V I R V I R
I I

V R I aN V aN V
  

      
(14)

2.2.5 Final Solution

The parallel resistance and the current source are now defined as a function of the series resistance.
Equations (10) and (14) are inserted into (7):
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This expression is simplified to:
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The goal is to find the value of sR such that f equals to zero. To solve this non-linear equation, Newton
method is used. As this function crosses zero several times, a specific interval has to be chosen. Newton
method can be used because f  and f  are both strictly positive on the studied interval: max0; ][ sR  .

maxsR   is defined as:

0
expoc maxP s th oc
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Here is an example of the behaviour of )( sf R on max0; ][ sR  for a specific photovoltaic module
(KC200GT Kyosera).

Figure 2 Behaviour of f(Rs) on studied interval

To use Newton method the derivative of the function is required:
 
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 (18)

As f  is positive, initialization is done with the maximum value:
0
s s maxR R  (19)

The iterative procedure is:

1
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And it is stopped when the variation is below the tolerance :
1i i

s sR R   (21)

Once the iterative procedure yields the final value of i
sR , it is possible to compute pR and phI  using

equations (10) and (14).
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As previous calculations were done under standard conditions, the current of the current source is
abbreviated with 0phI .

Parameters are now calculated for the actual atmospheric conditions:

th
kTV
q

 (22)

0
( )
( )

exp 1

sc i ref

oc v ref

s th

I K T T
I

V K T T
aN V
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(23)

 _ 0ph T ph i refI I K T T   (24)

_ph ph T
ref

GI I
G

 (25)

Here we have the parameters for the given conditions but for only one photovoltaic module. The total
number of modules is calculated using the nominal DC voltage and the given output power of the plant.

                plantDC
mod s mod p

maxP DC maxP

PVN N
V V I   (26)

where mod pN  is the number of module in parallel and mod sN  the number of module in series in the

plant.
Parameters are updated for the last time:

_  ph tot ph mod pI I N  (27)

_ _                         mod s mod s
s tot s p tot p

mod p mod p

N NR R R R
N N

 

 
  (28)

0_ 0 _                             tot mod p s tot s mod sI N I N N N   (29)

0 _
_

exp diodes
diodes tot

s tot th

VI I
aN V

 
   

 
(30)

Subscript “tot” is used to indicate that it is the final value that will be used in the model.
All electrical parameters are sent into the circuit.

3 Electrical circuit
The EMTP circuit is presented in Figure 3.
As the diode is a non-linear device, it is moved inside the control block, so the current source showed
in Figure 3 represents the photoelectric current source in parallel with the diode.
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Figure 3 Equivalent electrical circuit of PV park
The control block calculates the current from photoelectric cells and the current flowing through the
diode. Then the diode current is subtracted from photoelectric current, and the resulting current drives
the controlled current source in Figure 3.
Figure 4 presents the subcircuit which calculates the photovoltaic current as a function of irradiance
with respect to (25) and the diode current as a function of the diode voltage using (30). The irradiance
can be varied from outside of the PV park device. The temperature is considered constant during the
simulation.
An option to force the DC link voltage to a nominal value is available. In this case, the PV cell device is
an ideal voltage source.

Figure 4 Current source subcircuit

3.1 Reactive Power Control in PV Parks
The active power at the point of interconnection depends on the weather conditions. However,

according to customary grid code requirements, the PV park should have a central PV park controller
(PVPC) to control the reactive power at POI.

The PV park reactive power control is based on the secondary voltage control concept [9]. At
primary level, the inverter controller monitors and controls its own positive sequence terminal voltage (

wtV  ) with a proportional voltage regulator. At secondary level, the PVPC monitors the reactive power
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at POI ( POIQ ) and control it by modifying the PV inverters reference voltage values (V  ) via a
proportional-integral (PI) reactive power regulator as shown in Figure 5. In Figure 5 and hereafter, all
variables are in pu (unless opposite is stated) and the apostrophe sign is used to indicate the reference
values coming from the controllers.

A Q(V) mode is available where the Q-reference is function of the voltage.

Although not shown in Figure 5, the PVPC may also contain voltage control (V-control) and power
factor control (PF-control) functions. When PVPC is working under V-control function, the reactive
power reference in Figure 5 ( POIQ ) is calculated by an outer proportional voltage control, i.e.

 POI Vpoi POI POIQ K V V   (31)

where POIV   is the positive sequence voltage at POI and VpoiK  is the PVPC voltage regulator gain.

When PVPC is working under PF-control function, POIQ  is calculated using the active power at

POI ( POIP ) and the desired power factor at POI ( POIpf ).

When a severe voltage sag occurs at POI (due to a fault), the PI regulator output ( U  ) is kept
constant by blocking the input ( POI POIQ Q  ) to avoid overvoltage following the fault removal.

Figure 5  Reactive power control at POI (Q-control function)

3.2 PV inverter control and protection systems
The considered topology is shown in Figure 6. It uses a dc-ac converter system consisting of a

voltage source converter (VSC) on the grid side (GSC: Grid Side Converter). The dc resistive chopper
is used for the dc bus overvoltage protection. A line inductor (choke filter) and an ac harmonic filter are
used at the GSC to improve the power quality.
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Figure 6  PV park configuration

The simplified diagram of PV inverter control and protection system is shown in Figure 7. The
sampled signals are converted to per unit and filtered at “Measurements & Filters” block. The input
measuring filters are low-pass (LP) type.

- “Compute Variables” block computes the variables used by the PV inverter control and
protection system.

- “Protection System” block contains low voltage and overvoltage relays, GSC overcurrent
protections and dc resistive chopper control.

The control of the PV inverter is achieved by controlling the GSC utilizing vector control techniques.
Vector control allows decoupled control of real and reactive powers. The currents are projected on a
rotating reference frame based on either ac flux or voltage. Those projections are referred to d- and q-
components of their respective currents. In flux-based rotating frame, the q-component corresponds to
real power and the d-component to reactive power. In voltage-based rotating frame (900 ahead of flux-
based frame), the d and q components represent the opposite.

The control scheme is illustrated in Figure 8. In this figure, qgi  and dgi  are the q- and d-axis

currents of the GSC, dcV  is the dc bus voltage, and wtV   is the positive sequence voltage at PV park
transformer MV terminal.

In the control scheme presented in Figure 8, the GSC operates in the stator voltage reference

(SVR) frame. dgi  is used to maintain dcV  and qgi  is used to control wtV  .

The GSC is controlled by a two-level controller. The slow outer control calculates the reference dq-
frame currents ( dgi  and qgi ) and the fast inner control allows controlling the converter ac voltage

reference that will be used to generate the modulated switching pattern.

The reference for the positive sequence voltage at FSC transformer MV terminal (V  ) is calculated
by the PVPC (see Figure 5).
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Figure 7  Simplified diagram of inverter control and protection system

Figure 8  Schematic diagram of inverter control
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4 EMTP IMPLEMENTATION
The developed PV park model setup in EMTP is encapsulated using a subcircuit with a

programmed mask as illustrated in Figure 9 and Figure 10. The model consists of a solar panel, a
LV/MV PV array transformer, equivalent PI circuit of the collector grid and a MV/HV PV park transformer
(see Figure 6).

The first tab of the PV park mask allows the user to modify the general PV park parameters
(number of PV arrays in the PV park, POI and collector grid voltage levels, collector grid equivalent
and zig-zag transformer parameters (if it exists)), the general PV array parameters (PV array rated
power, voltage and frequency), the PV park operating conditions (number of PV arrays in service,
PVPC operating mode and reactive power at POI) and the atmospheric conditions.

In the Atmospheric conditions section, the maximum capacity of the park is calculated. If Power-
control is selected, the PV park operates at a reference power. The power is limited by the maximum
PV park capacity. If MPPT-control is selected, the PV park operates at maximum capacity for the
conditions specified in the Atmospheric conditions section. Warning: The MPPT controller is not
modelled in the version so if the irradiance is varied during the simulation, the power reference does
not change.

The second and the third tab is used for MV/HV PV park transformer and LV/MV PV array
transformer parameters, respectively.

The forth tab is used to modify the parameters of converter control system given below:

- Sampling rate and PWM frequency at PV converters

- PV inverter input measuring filter parameters,

- GSC control parameters,

- Coupled / Decoupled sequence control option for GSC

The fifth tab is used to modify the parameters of voltage sag, chopper and overcurrent protections.
The sixth tab is used to modify the PVPC parameters.

Figure 9  PV park device, mask parameters shown in Figure 10

AVM
75.015MVA
120kV
Q-control

PVPark1
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Figure 10  PV park device mask

4.1 Detailed (DM) and Average Value (AVM) Converter Models
The EMTP diagram of the PV dc-ac converter system detailed model (DM) is shown in Figure 11.

A detailed two-level topology (Figure 12.a) is used for the VSCs in which the valve is composed by one
IGBT switch, two non-ideal (series and anti-parallel) diodes and a snubber circuit as shown in Figure
12.b. The non-ideal diodes are modeled as non-linear resistances. The DC resistive chopper limits the
DC bus voltage and is controlled by protection system block.

The PWM block in ac-dc-ac converter system EMTP diagram receives the three-phase reference
voltages from converter control and generates the pulse pattern for the six IGBT switches by comparing
the voltage reference with a triangular carrier wave. In a two-level converter, if the reference voltage is
higher than the carrier wave then the phase terminal is connected to the positive DC terminal, and if it
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is lower, the phase terminal is connected to the negative DC terminal. The EMTP diagram of the PWM
block is presented in Figure 13.

Figure 11  EMTP® diagram of dc-ac converter system block in PV models (detailed model
version)

Figure 12  (a) Two-level Converter, (b) IGBT valve

Figure 13  PWM control block

The DM mimics the converter behavior accurately. However, simulation of such switching circuits
with variable topology requires many time-consuming mathematical operations and the high frequency
PWM signals force small simulation time step usage. These computational inefficiencies can be
eliminated by using average value model (AVM) which replicates the average response of switching
devices, converters and controls through simplified functions and controlled sources [11]. AVMs have
been successfully developed for wind and solar generation technologies [12], [13]. AVM obtained by
replacing DM of converters with voltage-controlled sources on the ac side and current-controlled
sources on the dc side as shown in Figure 14 and Figure 15.
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The forth (converter control) tab of the PV park device mask (see Figure 10) enables used AVM-
DM selection.

Figure 14  dc-ac converter system block in PV models (average value model version)

Figure 15  EMTP® diagram of AVM Representation of the VSC

4.2 PV park Model in EMTP
The EMTP diagram of the PV park is shown in Figure 16. It is composed of

- “PV hardware” block which contains the PV panel and the inverter,

- “PV Control System” block,

- “PV park Controller” block,

- PI circuit that represents equivalent collector grid,

- PV converter transformer (converter_transformer),

- PV park transformer,

- Initialization Sources with load flow (LF) constraint.

- A Norton harmonic source for harmonic analysis.

The initialization source contains the load flow constraint. Depending if the park operating mode,
the bus is changed from PV (for V-mode) to PQ (for the other modes). It also prevents large transients
at external network during initialization of PV electrical and control systems.

A capacitor bank device is present in the circuit but excluded. Users can include is and modify the
parameters. If the name is not modified, the capacitor will be considered for power flow initialization.
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Figure 16  EMTP® diagram of the PV park

4.2.1 PV park Control System Block
The function of PVPC is to adjust the PV inverter controller voltage reference in order to achieve

desired reactive power at POI (see Figure 5). The “PVPC” block consists in measuring block, an outer
voltage (or power factor) control and a slow inner proportional-integral reactive power control as shown
in Figure 17. The measuring block receives the voltages and the currents at POI (i.e. HV terminal of PV
farm transformer) and calculates voltage magnitude, active power and reactive power. The reactive
power reference for the inner proportional-integral reactive power control is produced either by the outer
proportional voltage control (V-control) or by the outer power factor control (pf-control) unless Q-control
is selected.
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Figure 17  EMTP® diagram of “PVPC” (PV park controller) block

4.2.2 PV Electrical System
The EMTP diagram of the electrical system is composed of the PV panel, the dc-ac converter

system, the choke filter, the shunt ac harmonic filters, the PV array transformer and the PV park
transformer as shown in Figure 18.

The measurement blocks are used for monitoring and control purposes. The monitored variables
are GSC and total PV unit currents, and FC terminal voltages. The dc voltage is also monitored (in dc-
ac converter system block). All variables are monitored as instantaneous values and meter locations
and directions are shown in Figure 18.

The dc-ac converter system block details have been presented in Section 4.1.
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Figure 18  EMTP® diagram of the PV park

The “shunt ac harmonic filters” block includes two band-pass filters as shown in Figure 19. These
filters are tuned at switching frequencies harmonics n1 and n2. The filter parameters are computed as
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where U  is the rated LV grid voltage, filterQ  is the reactive power of the filter and Q  is the quality

factor.

The switching frequencies harmonics n1 and n2 are as follows

1 PWM gsc sn f f (38)

2 12n n (39)

where PWM gscf   is the PWM frequency at GSC and sf  is the nominal frequency.

In case another type of filter or other parameters should be used, the filter can be modified by the user
inside the PV park subcircuit. If several PV parks are found in the network, the filter subcircuit and its
parents must be made unique to avoid modifying all PV park instances.
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Figure 19  “shunt ac harmonic filter” block

4.2.3 PV inverter Control System Block
The EMTP diagram of the PV inverter control system block is shown in Figure 20. The sampled

signals are converted to pu and filtered by the data acquisition block. The sampling frequency are set
to 12.5 kHz from device mask as shown in Figure 10 and can be modified by the user. The “sampling”
blocks are deactivated in AVM due to large simulation time step usage. In generic model, 2nd order
Bessel type low pass filters are used. The cut-off frequencies of the filters are set to 2.5 kHz and can
be modified by the user. The order (up to 8th order), the type (Bessel and Butterworth) and the cut-off
frequencies of the low pass filters can be modified from device mask as shown in Figure 10. The “GSC
Compute Variables” block does the dq transformation required for the vector control. The GSC (“Grid
Control” block) operates in the stator voltage reference frame. The protection block includes the
over/under voltage relay, the deep voltage sag detector, the dc chopper control, and overcurrent
detector.

The data acquisition and control system models can run from a compiled code. See the
“converter control” tab of the PV park mask.

Figure 20  EMTP® diagram of the PV inverter control block

The transformation matrix T in (40) transforms the phase variables into two quadrature axis (d and
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Figure 21) from the PV inverter terminal voltages allowing the synchronization of the control parameters
with the system voltage. In matrix T, the direct axis d is aligned with the stator voltage.

cos( ) cos( 2 / 3) cos( 2 / 3 )
2 sin( ) sin( 2 / 3) sin( 2 / 3)
3

1/ 2 1/ 2 1/ 2

t t t t
T t t t
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    

  
       
  

(40)

Figure 21  EMTP® diagram of DSRF PLL

4.2.3.1 PV inverter Grid Side Converter Control

The function of GSC is maintaining the dc bus voltage dcV at its nominal value and controlling the

positive sequence voltage at MV side of PV array transformer ( wtV  ).The EMTP diagram of the “Grid
Control” block is shown in Figure 22. GSC control offers both coupled and decoupled sequence control
options. User can select the GSC control option from the device mask as shown in Figure 12.
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Figure 22  EMTP® diagram of PV inverter “Grid Control” block

4.2.3.1.1 PV inverter GSC Coupled Control
The q-axis reference current is calculated by the proportional outer voltage control.

 qg V wti K V V    (41)

where VK  is the voltage regulator gain. The reference for MV side of PV array transformer positive

sequence voltage (V  ) is calculated by the PVPC (see Figure 5).

The positive sequence voltage at MV side of PV array transformer is not directly measured by the
PV inverter controller and it is approximated by

   2 2
wt dwt qwtV V V    (42)

where

dwt dwt tr dwt tr qwtV V R I X I        (43)

qwt qwt tr qwt tr dwtV V R I X I        (44)

In (42) - (44), dwtV  and qwtV 
 are the d-axis and q-axis positive sequence voltage at MV side of PV array

transformer, dwtV  and qwtV   are the d-axis and q-axis positive sequence voltage at PV inverter terminals

(i.e. the d-axis and q-axis positive sequence voltage at LV side of PV array transformer), dwtI  and qwtI

are the d-axis and q-axis positive sequence currents of PV inverter (i.e. the d-axis and q-axis positive
sequence currents at LV side of PV array transformer), trR  and trX  are the resistance and reactance
values of the PV array transformer.

The d-axis reference current is calculated by the proportional outer dc voltage control. It is a PI
controller tuned based on inertia emulation.
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where 0 is the natural frequency of the closed loop system and   is the damping factor.

 Cdc Cdc wtH E S  is the static moment of inertia, CdcE is the stored energy in dc bus capacitor (in

Joules) and wtS  is the PV park rated power (in VA).

The schematic of the GSC connected to the power system is shown in Figure 23. Z R j L 
represents the grid impedance including the transformers as well as the choke filter of the GSC. The
voltage equation is given by

 d dt  abc gabc gabc gabcv R i L i v (47)

Figure 23  GSC arrangement

The link between GSC output current and voltage can be described by the transfer function

 ( ) 1gscG s R sL  (48)

Using [15], the PI controller parameters of the inner current control loop are found as

p ck L (49)

i ck R (50)

.

The feed-forward compensating terms choke qg d chokeL i v   and  choke dg q chokeL i v    are

added to the d- and q-axis voltages calculated by the PI regulators, respectively. The converter
reference voltages are as follows

  dg p i dg dg choke qg d chokev k k s i i L i v        (51)

  qg p i qg qg choke dg q chokev k k s i i L i v        (52)

During normal operation, the controller gives the priority to the active currents, i.e.
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where
lim
dgI ,

lim
qgI  and

lim
gI  are the limits for d-axis, q-axis and total GSC currents, respectively.

The PV inverters are equipped with an FRT function to fulfill the grid code requirement regarding
voltage support shown in Figure 24. The FRT function is activated when
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1 wt FRT ONV V
  (54)

and deactivated when

1 wt FRT OFFV V
  (55)

after a pre-specified release time FRTt .

When FRT function is active, the GSC controller gives the priority to the reactive current by
reversing the d- and q-axis current limits given in (53), i.e.

   

lim

2 2lim lim

qg qg

dg dg g qg

i I

i I I i

 

   
(56)

The EMTP diagram of “Idq reference limiter” and “FRT decision logic” blocks are given in Figure 25
and Figure 26, respectively. The limits for d-axis, q-axis and total GSC currents and FRT function
thresholds can be modified from the device mask as shown in Figure 12.

Figure 24  PV inverter reactive output current during voltage disturbances [16].

Figure 25  EMTP® diagram of “Idq reference limiter” block
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Figure 26  EMTP® diagram of “FRT decision logic” block

4.2.3.1.2 PV inverter Grid Side Converter Decoupled Sequence Control
Ideally, the GSC control presented in the previous section is not expected to inject any negative

sequence currents to the grid during unbalanced loading conditions or faults. However, the terminal
voltage of PV inverter contains negative sequence components during unbalanced loading conditions
or faults. This causes second harmonic power oscillations in GSC power output. The instantaneous
active and reactive powers such unbalanced grid conditions can be also written as [17]

0 2 2

0 2 2

cos(2 ) cos(2 )
cos(2 ) cos(2 )

C S

C S

p P P t P t
q Q Q t Q t

 
 

  
   (57)

where 0P  and 0Q  are the average values of the instantaneous active and reactive powers respectively,

whereas 2CP , 2SP , 2CQ  and 2SQ  represent the magnitude of the second harmonic oscillating terms
in these instantaneous powers.

With decoupled sequence control usage, four of the six power magnitudes in (57) can be controlled
for a given grid voltage conditions. As the oscillating terms in active power 2CP , 2SP  cause oscillations

in dc bus voltage dcV , the GSC current references ( dgi  , qgi  , dgi  , qgi  ) are calculated to cancel out

these terms (i.e. 2 2 0C SP P  ).

The outer control and Idq limiter shown in Figure 8 calculates dgi , qgi ,
lim
dgI  and

lim
qgI . These

values are used to calculate the GSC current references dgi  , qgi  , dgi   and qgi   for the decoupled

sequence current controller. As the positive sequence reactive current injection during faults is defined
by the grid code (see Figure 24), the GSC current reference calculation in [17] is modified as below:

1

0

2

2

1 0 0 0qg
qg

qg dg qg dgdg

qg dg qg dg Cqg

Sdg qg dg qg
dg

i i
v v v vi P
v v v v Pi

Pv v v vi



   
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                                      

(58)

where 0P  is approximated by
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0 wt dgP V i  (59)

The calculated reference values in (58) is revised considering the converter limits
lim
dgI  and

lim
qgI .

For example when   lim
qg qg qgi i I    , the q-axis reference current references are revised as below

 
 

lim

lim

qg qg qg qg qg

qg qg qg qg qg

i i I i i

i i I i i

   

   

       
       

(60)

where "qgI   and "qgI   are the revised reference values for q-axis positive and negative currents,

respectively.

The revised d-axis positive and negative current references "dgI   and "dgI   can be obtained with

the same approach using
lim
dgI . It should be emphasized here that, during faults the priority is providing

dgI   specified by the grid code. The remaining reserve in GSC is used for eliminating 2CP  and 2SP .

Hence, its performance reduces with the decrease in electrical distance between the PV park and the
unbalanced fault location.

As dgi , qgi , dgi  and qgi  are controlled, the decoupled sequence control contains four PI

regulator and requires sequence extraction for GSC currents and voltages. The sequence decoupling
method [18] shown in Figure 27 is used in EMTP implementation. In this method, a combination of a

low-pass filter (LPF) and double line frequency Park transform ( 2P  and 2P ) is used to produce the
oscillating signal, which is then subtracted. The blocks C  and P  represent the Clarke and Park
transformation matrices, and the superscripts ±1 and ±2 correspond to direct and inverse transformation
at line frequency and double line frequency, respectively.

In EMTP implementation, the feed-forward compensating terms  choke qg d chokeL i v   and

 choke dg q chokeL i v    are kept in coupled form and added to the PI regulator outputs in stationary αβ-

frame.

P+1 Σ
P -2LPF

-
+

C
iabc iαβ

P -1 Σ
P+2LPF -

+

idq

idq

+

-

Figure 27  Sequence extraction using decoupling method.

4.2.4 PV inverter Protection System Block
Figure 28 shows the “protection system” block. It includes overvoltage and undervoltage protection

relays, a dc overvoltage protection (chopper protection) and an overcurrent detector for each converter
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to protect IGBT devices when the system is subjected to overcurrent. For initialization, all protection
systems, except for DC chopper protection, are activated after 100ms of simulation (i.e. init_Prot_delay
= 0.1s). The protection system parameters can be modified from the device mask as shown in Figure
29.

Figure 28  EMTP® diagram of protection system block
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Figure 29  Protection system parameters

4.2.4.1 Overvoltage and Undervoltage protections
Figure 30 shows overvoltage and undervoltage protections. It includes rms-based over/under

voltage relays, cumulative instantaneous overvoltage relays, deep voltage sag detectors.
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Figure 30  EMTP® diagram of overvoltage and undervoltage protections

The instantaneous overvoltage protection suggested by IEEE Std 1547-2018 is developed and
added to the protection schemes. This protection works based on a cumulative instantaneous
overvoltage. Figure 31 shows the threshold values of the voltage (per unit of nominal instantaneous
peak base) and cumulative duration of the transient overvoltage protection, and they can be modified
in the device mask. The cumulative duration is the sum of durations when the instantaneous voltage
exceeds the protection threshold over a one-minute time window.

Figure 31  Transient overvoltage limits
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The RMS-based over/under voltage protections are designed based on the technical requirements
set by Hydro Quebec for the integration of renewable generation. The over/under voltage limits as a
function of time are presented in Figure 32 and can be modified in the PV device mask. The voltages
below the red line reference and above the black line reference correspond to the ride-through region
where the PV park is supposed to remain connected to the grid. This block measures the rms voltages
on each phase and sends a trip signal to the PV inverter circuit breaker when any of the phase rms
voltage violates the limits in Figure 32.

Figure 32  LVRT and HVRT requirements [19]

The “Deep Voltage Sag Detector” block temporary blocks the GSC in order to prevent potential
overcurrents and restrict the FRT operation to the faults that occur outside the PV park.

4.2.4.2 dc Overvoltage Protection Block
 The function of dc chopper is to limit the dc bus voltage. It is activated when the dc bus voltage

exceeds chopper ONU   and deactivated when dc bus reduces below chopper OFFU  . EMTP diagram of

the “dc overvoltage protection” is shown in Figure 33.

Figure 33  EMTP® diagram of dc overvoltage protection block

Canada
Hydro Quebec - LV & HV RT

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

0,0 0,1 1,0 10,0 100,0 1000,0Time (s)

Vo
lta

ge
 (p

u)

Trip Region

Ride Through Region

f(u)

1
2
3
4

(u[1]>u[3])+((u[1]>=u[2])*(u[1]<=u[3]))*u[4]

Chopper_function

Delay
1

Chopper_in_Delay

c
#Chopper_OFF#

Chopper_Low_limit

c
#Chopper_ON#

Chopper_High_Limit

Vdc
chopper_active

scope
Vdc_meas

1
2

select

Chopper_activation_selector

f(u)
#activate_ChopperProt#+1

activate_Protect1

0



EMTP®-EMTPWorks, 5/5/2023 2:26:00 PM Page 33 of 46

4.2.4.3 Overcurrent Protection Block
 The overcurrent protection shown in Figure 34 blocks the converter temporarily when the

converter current exceeds the pre-specified limit.

Figure 34  EMTP® diagram of overcurrent protection block
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5 PV PARK RESPONSE TO UNBALANCED FAULTS
This section provides a comparison between the PV park responses with coupled and decoupled

sequence controls. Although the comparison is conducted for various type unbalanced faults in the 120
kV, 60 Hz test system shown in Figure 35 [28]-[30], only the 250 ms double line to ground (DLG) fault
simulation scenarios are presented. The simulation scenarios are presented in Table I. The PV
converters are represented with their AVMs. The simulation time step is 10 µs.

In the test system, the loads are represented by equivalent impedances connected from bus to
ground on each phase. The transmission lines are represented by constant parameter models and
transformers with saturation. The equivalent parameters for the 34.5 kV equivalent feeders are
calculated on the basis of active and reactive power losses in the feeder for the rated current flow from
each of the PVs [31]. In all simulations, the PV is operating at full load with unity power factor (i.e. POIQ
= 0).

Figure 35  120 kV, 60 Hz test system
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5.1 PV park Response to Unbalanced Faults

5.1.1 Simulation Scenarios M1 and M2 with PV park
As shown in Figure 36, the simulated unbalanced fault results in second harmonic pulsations in

the active power output of the PV park in scenario M1. These second harmonic pulsations are
eliminated in scenario M2 with decoupled sequence control scheme in GSC at the expense of a
reduction in the active power output of PV park as shown in Figure 37. On the other hand, the reactive
power output of the PV park is similar in scenarios M1 and M2. This is due to the strict FRT requirement
on positive sequence reactive currents.

The performance of GSC decoupled sequence control is limited to GSC rating as well as the FRT
requirement specified by the grid code. The complete elimination of second harmonic pulsations cannot
be achieved when the required GSC current output exceeds its rating. It should be noted that, when the
electrical distance between the PV park and unbalanced fault decreases, larger GSC currents are
required to achieve both FRT requirement and the elimination of second harmonic pulsations.

The negative and positive sequence fault currents ( nI  and pI ) of the PV park in scenarios M1

and M2 are also quite different as illustrated in Figure 38. This difference strongly depends on the
unbalanced fault type, its electrical distance to the PV park, GSC rating and the FRT requirement
specified by the grid code. It becomes less noticeable especially for the electrical distant faults such as
an unbalanced fault at BUS6 as presented in Section 5.1.2.

Figure 36  PC2 and PS2 of aggregated PV park in scenarios M1 and M2

Figure 37  P0 and P0 of aggregated PV park in scenarios M1 and M2
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Figure 38  In and Ip of the PV park in scenarios M1 and M2

5.1.2 Simulation Scenarios N1 and N2 with the PV park
As the electrical distance between the PV park and the unbalanced fault is much larger in scenario

N1 compared to scenario M1, both the voltage sag and the second harmonic pulsations in the active
power output are much smaller in scenario N1 compared to the scenario M1 (see Figure 39 and Figure
36). As a result, the decupled sequence control of GSC achieves elimination of these pulsations in
scenario N2 without any reduction in the active power output of the PV park (see Figure 40 and Figure
37). As seen from Figure 41 and Figure 38, the PV park fault current contribution difference between
the scenarios N1 and N2 also becomes less noticeable especially for positive sequence fault currents
compared to the difference between scenarios M1 and M2.

Figure 39  PC2 and PS2 of aggregated PV park in scenarios N1 and N2
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Figure 40  P0 and Q0 of aggregated PV park in scenarios N1 and N2

Figure 41  In and Ip of the PV park in scenarios N1 and N2
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6 AVERAGE VALUE MODEL PRECISION AND EFFICIENY

6.1 120 kV Test System Simulations
This section provides a comparison between average value model (AVM) and detailed model (DM)

of the presented PV park models. The simulation scenario M2 in Table I is repeated for 50 µs simulation
time step (M3) and for DM with 10 µs simulation time step (M4).

6.1.1 Simulation Scenarios M2 - M4 with the PV park
As shown in Figure 42-Figure 44, AVM usage instead of DM provides very accurate results even

for 50 µs time step usage.

Figure 42  PC2 and PS2 of aggregated PV park in scenarios M2 - M4

Figure 43  P0 and Q0 of aggregated PV park in scenarios M2 - M4
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Figure 44  In and Ip of the PV park in scenarios M2 - M4
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7 DETAILED PV PARK MODELS AND AGGREGATED MODEL
PRECISION

The example is done with wind-turbines. The same conclusions can be drawn for PV park.

Certain grid integration studies, such as analysing collector grid faults and collector grid
overcurrent protection system performance, LVRT and HVRT capability studies [4], ferroresonance
study [32], require EMT type simulations with detailed Wind Park (WP) model. These studies do not
only require detailed MW collector grid model, but also detailed model of HV/MV WP substation
including overvoltage protection, overcurrent and differential current protections, measuring current and
voltage transformers as shown in Figure 45 -Figure 47.

Figure 45  EMTP diagram of the 45 x 1.5 MW WP detailed model given in Figure 32.
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Figure 46  EMTP diagram of the HV/MV WP Substation

Figure 47  EMTP diagram of MV Feeder-1

The WT model in Figure 47 is obtained from the WP model presented in Chapter 4 by excluding
the Wind Park Controller (WPC), WP transformer and collector grid equivalent. The associated device
mask is shown in Figure 48. It does not include the tabs used for MV/HV WP transformer and WPC
parameters. On the other hand, the first tab of the aggregated wind turbine mask includes certain WP
parameters (total number of WTs in the WP, POI and collector grid voltage levels, collector grid
equivalent and the MV/HV WP transformer impedances) in addition to the general wind turbine
parameters (WT rated power, voltage and frequency) and wind speed. It should be noted that, the
MV/HV WP transformer and the collector grid equivalent impedances are used GSC parameter
calculation (see section 4.2.3.1).

Scenario M2 in Table I (DLG fault at BUS4 for GSC decoupled sequence control scheme) is
simulated using the detailed WP model to conclude on accuracy of the aggregated model.  As shown
in Figure 49 - Figure 52, the aggregated models of WP provide accurate results.
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Figure 48  Aggregated FSC based wind turbine device mask

Figure 49  Active and reactive power at POI, PV park with FSC WTs
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Figure 50  Positive and negative sequence currents at POI, PV park with FSC WTs

Figure 51  Active and reactive power at POI, PV park with DFIG WTs

Figure 52  Positive and negative sequence currents at POI, WP with DFIG WTs
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