Access to EMTP user presentations, webinars, and slide deck presentations.
26 presentations for transformer:
Author(s): Umesh Sen - Power Grid
Type:Technical Presentation
Downloaded: 3
Date: 2021-06-21
Abstract
To meet the increasing power demand, a number of extra high voltage (EHV) transmission lines is being added to the power system network, which enhances the complexity of power system network. It is es... see moresential duty of power engineer to fulfill the growing demand ensuring the reliability, stability & security of GRID. Transient simulation tools like EMTP play a vital role to provide the flexibility to power engineer for simulating/studying the various case scenarios which couldn’t be simulate in physical power system.
Such tools eventually help power engineer to build a sustainable and secure GRID. In POWERGRID, being a central transmission utility, various studies are being carried out to arrive the technical particular of new transmission system and optimize or fine tuning of existing system. Some of them i.e. Transient Recovery Voltage (TRV) study of 1200kV Transmission network, Smart Power from insulated earth wire of EHV transmission line and 1200kV Transformer Inrush current study are discussed in presentation. 1200kV National Test Station was established & successfully charged along with the transmission line in state of BINA in India.
TRV study was carried out for assessment of various test duties of 1200kV Circuit Breaker. Presentation cover the detailed discussion of 1200kV TRV study and a brief about the facilities like HIL, HVDC control Replica setup, STATCOM replica setup available at Powergrid Advanced Research and Technology Centre (PARTeC).
Author(s): Jin Yang - Ener-Phase Solutions
Type:Technical Presentation
Date: 2021-06-21
Abstract
A case study will be presented demonstrating modeling of overvoltage in a moderately sized system involving medium voltage vacuum breakers, cables and transformers. The focus is on simulating high fre... see morequency overvoltage generated by circuit breaker prestrikes and re-ignitions and evaluating the impacts on transformer insulation.
-Results obtained from a customized breaker TRV model which is capable of controlling the capability of switching high frequency current will be presented.
-The methodology of analyzing severity of overvoltage in the frequency domain was applied in this project. Results and discussions regarding frequency domain analysis will be shared.
-Simulation results regarding typical system configurations with variation of key parameters such as cable lengths, load power factors will be briefly presented.
-Application of EMTP study results in assisting equipment specification, as well as overvoltage mitigation methods including optimizing switching sequences, necessity of snubber circuits will be discussed.
-Case specific strategies to improve simulation speed and work flow with EMTP will be introduced and discussed.
Author(s): Sofía Aparicio, Andrea Pizzini, Nicolás Morales - UTE
Type:Technical Presentation
Date: 2021-06-21
Abstract
In order to obtain the distances required to perform live working maintenance on the Uruguayan transmission network under secure conditions, electromagnetic transient (EMT) studies are conducted to ob... see moretain the maximum switching overvoltage that can be found in 500-150 kV transmission network. Two different approaches were considered for these studies. On one hand, a simple approach is used, analyzing line switching transients on simplified two line network models. On the other hand, a detailed approach is considered, analyzing line switching overvoltage transients on a complete network model.
This complete model considers 500 kV and 150 kV overhead lines, 500/150 kV transformers, cables, reactive power shunt compensation, hydraulic and thermal generators. Electromagnetic transient studies and the complete network model are performed in EMTP software. Finally, a comparison between the results obtained considering each approach is performed.
Author(s): Angelica Rocha & Gustavo Oliveirra - ATG Engenharia & Federal Univ. of Parana
Type:Technical Presentation
Date: 2021-06-21
Abstract
The presentation will discuss the analysis of successive dielectric failures of inductive voltage transformers (VT) at a 500 kV GIS of Jirau hydroelectric plant in Brazil. All the failures involved th... see moree same region of the high voltage winding and the cause was undetermined. These incidents motivated a series of actions to identify the cause and improve the reliability of these equipment in the field.
One possibility the effect of very fast transients (VFTO) expected to occur during frequent switchings of disconnector and/or circuit-breaker at GIS. It well known that VFTO may stress inductive equipment insulation leading to a dielectric failure.
In this context, different switching conditions were simulated with the EMTP to determine the transient overvoltage at the potential transformer terminals. A special high frequency model of the VT was developed based on its frequency admittance matrix measured in the field. The result of the simulations was discussed together with the VT manufacturer and a final diagnosis of the failures was achieved.
Author(s): Diego F. Rodríguez - GERS
Type:Technical Presentation
Date: 2021-06-17
Abstract
Temporary overvoltages (TOV) are oscillatory overvoltages mainly caused by switching or faults, which are of relatively long duration and undamped or slightly damped. Maximum overvoltages under faulte... see mored conditions can require considerable energy magnitudes absorbed by surge arresters.
These energies may overpass maximum limits and lead to equipment damage.
This project presented a study to identify the maximum TOV at the MV equipment of a PV power plant during fault-clearing events. Two methods of TOV suppression are evaluated, including grounding transformers and fast grounding switches under two different configuraions. An electrical model was elaborated in EMTP to perform the simulation of the transient overvoltage due to the un-balanced fault clearance, considering each inverter of the PV plant. The results show that considering no grounding technologies at the feeders, the energy absorption limit is overpassed in the islanded system.
Therefore, a fast grounding switch or a system with grounding technology at each feeder is needed in order to protect the substation equipment.